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Abstract

We present a problem data set for stochastic programming, and
associated real world applications. The problem descriptions were col-
lected from the literature, with emphasis on variety of problem struc-
ture and application. Each problem has a short description, math-
ematical problem statement, and notational reconciliation to a stan-
dard problem format. In addition, most problems have one or more
corresponding data files in SMPS[1] format.
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1 Introduction

Stochastic programming has grown in importance in recent decades, because
it allows the modeler to accurately represent planning under uncertainty.
With strong interest in solving such problems and in finding more efficient
solution techniques, there has arisen a need for a test set of stochastic pro-
gramming problems.

One of the most popular forms of stochastic programming problems is
the multistage stochastic linear program (MSSLP):

minimize Z(z;) := c] 21 + Qa(71)
subject to Az =b
T 2 0, T € R™
where
Q(24-1) := E (Qt(z4-1, ct, by, Ag, T4)],

{ct,bt, A, T}
Qt(xt——lactabtaAtyT;t) =
igﬂ{nt{cht + Qi) : Ay = by — Tywe—y, 2 > 0}
t

t=2,3,...,N -1,

T

and
QN(xN-—la CN, bN, AN,TN) =

inf {C}CEN . ANCL‘N = bN - TNCEN_l,LL'N 2 0}
TN ER™N

1)

Here and throughout this paper, boldface letters denote random variables,
and F [-] denotes the expected value taken with respect to x.
{x}

While MSSLPs are growing in popularity, many of the applications are
proprietary, and therefore the models are not publicly available. Test set
collections of MSSLPs exist [8, 9]. However, they need to be enriched with
newer applications. Also, it would be helpful if the original applications
are described in the notation of the original model, and related to a unified
notation such as in (1). In addition, it would be helpful to make the data for
the test problems available in SMPS [1] format, the (emerging) standard for
specifying input to software for MSSLPs.

To address the above needs, we have collected a group of eleven problem
classes from a variety of settings. They are all MSSLPs, but of various struc-
tures and sizes. Some have only stochastic right hand sides (bg, ¢ > 1), while
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some have stochastic data elsewhere. In some cases, problem instances were
explicitly stated in the literature. In other cases, we created the problems
based solely on the problem description in the literature, and in some cases,
there is not yet any sample problem.

For each model application, we present a problem description, a con-
cise problem statement, and, if available, a numerical example given by the
model authors. We have attempted to stay as close to the authors’ notation
as possible in these subsections. Additionally, where feasible, we present a
notational reconciliation, which shows how to transform the notation of the
problem into form (1).

Each problem class may be used to generate one or more instances of
MSSLPs. We have created 15 such instances. The data for these 15 test
problems, as well as 12 other test problems that we did not create, are avail-
able in SMPS format [1] from the authors.

BEach section covers a single problem class. At the beginning of each
section, we give a citation to the original application, a brief description of
the problem structure, and if applicable the names of the SMPS files for the
associated problem instances.

It is the intention of the authors to update the classes of applications and
the test problem instances as new application areas become prominent, and
to make the information that we present below for each application area, as
well as SMPS inputs for each test problem instance freely available to the
stochastic programming research community.

In that spirit, we encourage colleagues to submit new problem data with
an accompanying description. Such submissions should include the following:

1. description of the application and problem notation,

2. problem statement, in the same notation,

w

numerical example, if practical,

e~

reconciliation to the notation of (1),
5. data files in SMPS format for each instance, and

6. optimal solutions for each instance and example.




2 Airlift operations scheduling

Due to J.L. Midler and R.D. Wollmer [12]
(2 stage, mixed integer linear stochastic problem)

/AIRL.sto.first

/airlift/AIRL.cor, /AIRL.tim,
/AIRL.sto.second

2.1 Description

In scheduling monthly airlift operations, demands for specific routes can be
predicted. Actual requirements will be known in the future, and they may
not agree with predicted requirements. Recourse actions are then required
to meet the actual requirements. The actual requirements are expressed in
tons, or any other appropriate measure, and they can be represented by a
random variable. Aircraft of several different types are available for service.
Each of these types of aircraft has its own restriction on number of flight
hours available during the month.

The recourse actions available include allowing available flight time to go
unused, switching aircraft from one route to another, and buying commercial
flights. Each of these has its associated cost, depending on the type(s) of
aircraft involved.

Let F; be the maximum number of flight hours for aircraft of type ¢
available during the month, and let a;; be the number of flight hours required
for an aircraft of type 7 to complete one flight of route j. Then if z;; is the
number of flights originally planned for route j using aircraft of type ¢, the
first stage constraint is

> ayzi; < F, Vi. (2)
J

When taking recourse action, we are under the constraint that we cannot
switch away more flight hours from aircraft of type ¢ and from route j, than
we have originally scheduled for such. This leads to a second stage constraint:

Zaijkivijk < @55, Vi, V3. (3)
K
Here, z;;; represents the increase in the number of flights for route £ flown

by aircraft type i, because of being switched from route j. Also, a;;x is the

3




number of flight hours required for aircraft of type i to fly route k, after
having been switched from route j. Note that an increase of z;j flights for
route k results in the cancellation of

Qijk
( Tijk
aij

flights for route j, since ‘k flights’ and ‘j flights’ are not necessarily equal

units.
We also have the recourse constraint that the demand for each route

must be met. Let b;; be the carrying capacity (in tons) of a single flight of
an aircraft of type i, flying route j. Then the load originally scheduled to be
carried on route j (1.e. the ‘best guess’ of the demand) is

The total carrying capacity switched away from route j in the recourse action
is

5 by (%) i | )

i k#j o
Conversely, the carrying capacity switched to route j is
Z bijTik;- (6)
i,k#]

If we let y be the demand for route j which is contracted commercially in
the recourse, and y; be the unused capacity assigned to route j, then we
may combine expressions (4), (5), and (6) to form the demand constraint for
the recourse!:

QAijk
3 by - S0y (42 ) et 3 b 0~y = (D)
i,k#j i,k#]

Here, d; is the random variable representing the demand for route j.

1We believe a typographical error was made in {12, equation (2.3)]. Specifically,
¢ Z bijwijk - y;" should read ° Z bz‘jfl?ikj +y}”’.
i,k#j i,k#]




Finally, let ¢;; be the cost for aircraft type 7 to be initially assigned and
fly one flight of route j. Let c;jx be the cost for aircraft type ¢ to fly one
flight of route k, after having been initially assigned route j. Let cj be the
cost per ton of commercially contracted transport on route j, and let ¢ be
the cost per ton of unused capacity on route j.

2.2 Problem statement

The problem statement combines equations (2), (3), and (7):

minimize Z cijzi; + Q{zi})
i,j
subject to Zaijxi]— < F, Vi
J
Tij Z O) VZ, Vjv

where
Q({=i;}) = |
. ak _
E ik % i j
subject to
Z QijkTijk < Qi T4, Vi, Vj
ki
QAiik — .
-3 0 (52 ) S+ 7 =~ D
i k] N ikt i
:Eijkay_;]—:yj— Z 0’ V'L,Vj, Vk.

Note that the variables z;; and z;; represent numbers of flights, and
therefore should be integer valued. This is not specified in the problem
statement, however. This is apparently an acceptable compromise to Midler
and Wollmer [12] in order to simplify the problem, and they recommend that
the user adopt his/her own rounding scheme.
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2.3 Numerical example

Midler and Wollmer [12] provide a small numerical example, with two routes
and two types of aircraft. The constants are given as follows:

Flying hours per Carrying capacity
round trip (tons)
apy | Qo1 | Q12 | Q22 bir | bar | b1z | ba2
24 |1 49 | 14 | 29 50120 | 75| 20
Cost per flight Penalty costs
($) ($/t0n)
cin | e | a2 | o d |6 |lala
7200 | 7200 | 6000 | 4000 5001250 010
Flying hours - Costs per flight-
switched flights switched ($)
a1z | G121 | G212 | G221 Ci12 | C121 | C212 | Co21
19 { 29 | 36 | 56 7000 | 8200 | 5500 | 8700

The total flying time available is F; = F; = 7200. The demand for route
1, dy, follows a lognormal distribution with parameters y; = 1000, o1 = 50,
and dy independently follows a lognormal distribution with parameters ps =
1500, o2 = 300.

The optimal solution of this problem,

zi1 T2 | | 165 23.2
To1 Too | 6.7 0.0 |’

was given by Midler and Wollmer [12], and is based on drawing a sample of
925 observations from each distribution of d; and ds. Midler and Wollmer
[12] did not specify how the observations were drawn from the distributions.
Therefore, we were not able to exactly replicate this problem. We have cre-
ated two versions: airlift.first and airlift.second. These are intended
to be as close as possible to the original problem stated here.




2.4 Notational reconciliation

To make this problem fit the notation of Problem (1), we make some minimal
changes. Let I be the total number of aircraft types, J be the total number
of routes, and set n; := (I)(J) + I. Set

Ti11 , G}

T12 C12

T CiJ F
T2 Cai1 F,

I = ) C = ) bl = )

ZrJ Cry F;

S1 0

S9 0

| sr [ 0

and
A1 =
ap; -+ aig
az v+ G 0 [ixt

0

arpp - apg




Note that the number of stages, N, is two. The recourse vectors are

T112 [ 112 — 110112/ 011
T113 €113 — c11a113/a11
T11J C11J — C11a11J/a11
T121 Ci21 — 0120121/012
Z123 C123 — 0120123/ 12
Ti2J Ci2g — Clzalzj/ 12

Cry(J-1) — CIJaIJ(J—l)/ ary

Tryj(J-1)
To 1= Cy 1=
2 s11 ’ 2 0 )

S12 0
SrJ 0

+ +
N G

+ +
Yy Cy
U G

Ly i cy i
and
B OIJXI
d;
b2 = d2
L. dJ =
The transition matrix is
—a11 0
—ag ol 7xI
T2 = )
0 —arg
B, B, --- Bp |07




where

A IIJxIJ OIJx2J
Ap = B o7xI7 | [7xJ _IxJ }’

where
AT
an .
R Q1o 0
AZ: )
0
AT
ary
IT3T T
b111 b121 bIJl
T T T
B .= bg by v brgp
L . . . bl
T iT T
biiy bioy o0 bryy
J
Qij = E QijkChj
k=1
and
S b (ainp/ai) €y if =k
E'k"'— p=1 ik \Qikp/ ik ) Cpj ] =K,
ki ~ ep .
bij€; if j # k.
Here,

e; € R/-! if 7 <k
éjk = q€j-1 € R/-1 if 7>k
0eR-T ifj=k




3 Forest planning

Due to H. Gassmann [8]

(Multistage, linear stochastic problem)

/stocforl /stocforl.cor, /stocforl.tim, /stocforl.sto
/stocfor2 /stocfor2.cor, /stocfor2.tim, /stocfor2.sto
/stocfor3 /stocfor3.cor, /stocfor3.tim, /stocfor3.sto

3.1 Description

The job of a long range forest planner is to decide what parts of the forest
will be harvested when. Important criteria for such a decision are the age of
the trees, and the likelihood that trees left standing will be destroyed by fire.

Gassmann [8] creates a set of K age classifications of equal length (e.g. 20
years), and places each portion of the forest into one of the classes, according
to the age of the trees within. He also divides the future planning horizon
into T rounds, each with a time length equal to that of each age classification.
That is, in one time round, any trees that are not destroyed or harvested will
move to the next age class.

Let the vector s, € RX represent the total amount of area of the forest
in each age class 1 through K in round ¢, and let z; € RX be the area of the
forest harvested in each age class in round ¢. Obviously, we cannot harvest
more trees of any age than currently exist. Therefore,

xtSSt, t:1,2,...,T. (8)

Immediately replanting harvested land will cause an area increase of Qz; in
the next round, where '

11 -1

00 --0
Q=

00 ---0

The area of unharvested trees in round t will be s; — x;. Of this area, a
random proportion ps = (Ps1, Pi2, - - - ,Pik) ' € RE will be destroyed by fire

10



in round ¢. Let

Pt1 Pt2 ce PtK-1 Ptk
1—-pu 0 cee 0 0
Po=| 0 1-pa 0 - 0
i 0 0 1-px-1 1"ptK_

Then, assuming all burned areas are immediately replanted, and therefore
wind up in age class 1,

ser1 = Pe(se — 1) + Qs (9)

The material balance in (9), along with the availability limits in (8), will be
constraints in the problem.
The last type of constraint that will be in the problem is of the form

amit—l S yTxt S ﬁyTxt—-la = 27 3) e )T' (10)

Here y € RX represents the yield, and o and 3 are constants. This con-
straint might represent limits on how fast the timber industry can change its
purchasing volume from one time period to the next.

The objective will be to maximize the value of timber, both cut and
remaining after round 7', subject to the constraints (8), (9), and (10). Since
the time scale of the problem is quite large, Gassmann discounts monetary
values in future round t to current monetary scales by multiplying by §*~*.
For example, if each round is 20 years long, for interest (or inflation) rate i,
6 = (1 —14)?. Therefore, the present value of timber harvested in round ¢ is

5t-1yTxt-

If v € RE is the value of the trees standing after round 7', then the total
value of trees left standing after round 7" and cut during rounds 1 through
T is

T
Z 5t_1yTx£ + 6T’UTST+1.
t=1

11




3.2 Problem statement

We are given the vector s; € RX, denoting the area of forest covered with
timber in the K different age classes at the beginning of time period 1. We
are also given y € RX the vector of yields (in units currency /hectacre of
forest harvested), v € R the value of standing timber after round T', the
discount rate &, and constants c, 3.

With such information, the problem is then to

maximize y'z;+ Qa(21)

subject to z; < & (11)
T1 2 Oa
where
Q(z-1) = E {ma.x [5t*1yTCEt + Qt+1($t)] :
{P¢_1,P¢,. P}
Tt __<__ St (12)
s = (Q—Py1)zs +Pyy1si (13)
oy'z, < YT <Byma}, t=2,...,T, (14)
and
QT+1(IET) = {5TUT8T+1 ST = (Q — PT)CL’T + PTST} . (15)

Equations (11), (12) and (15) have been changed slightly from the prob-
lem statement in [8], in order to more closely match the content of the ex-
ample problems submitted to Netlib by Gassmann [7].

3.3 Numerical results

Gassmann [8] reported numerical results for many cases. In all cases, he
assigned the values shown in Table 1. For the distribution of P, Gassmann
[8] used several different discretizations. The few included in Table 2 are
called “upper bound discretizations” by Gassmann. In the first set of trials,
Gassmann [8] found the constraints to be too severe. Therefore, he changed
the problem as follows. Violations to the constraints

oy'z, <y'a < By z1

12



Table 1: Values of parameters used in Gassmann [8]

T =17 K=38 5 = 0.905
a=0.9 =11

320.3417 [ 241 ] [0

356.1874 125 0

398.4370 1,404 16

| 4482349 _ | 2004 _ | 107

U= 506.9204 | | * 9,768 | | Y 217

‘ 564.9204 16, 385 275

| 587.9204 2,815 298
- 595.9294 | 61,995 | 306

were allowed, but penalized. These constraints were replaced with

ayT»’Ct—l - yTxt
yTl‘t - ,ByTCEt—l
D1, P2

and the term

S

-1

<
<
>

Pu

D2
0,

‘ ~3" y(pu + pr2)

1

| t

was added to the objective. In all the numerical results, 7y := 50.

Results from Gassmann [8] are shown in Table 3. Here, a discretization
structure of i.jjj.kkk means that an ¢ point discretization was used in the
first round, a j point discretization was used in rounds two through four,
and a k point discretization was used in rounds five through seven. The only

nonzero component of the optimal 2; was component 8.

Problem statements in MPS format may be found at Netlib, at http://
www.netlib.org/lp/data/ under the names stocforl, stocfor2, and stocfor3

ul
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Table 2: Discretizations used in Gassmann [8]

1 point discretization

Fire Rate  0.06258

Probability 1.000

2 point discretization

Fire Rate  0.08612 0.04240
Probability 0.4616  0.5384

3 point discretization

Fire Rate  0.10499 0.07354 0.04240
Probability 0.1847 0.2769  0.5384

Table 3: Results from Gassmann [8]

Discretization Structure
o 1111111 1.222.222 1.322.222 1.332.222 1.333.222 1.333.322
Obj. value  41,132.0 40,914.3  40,897.0  40,864.2  40,835.8  40,703.1
Opt. z1(8) 20,495.8 20,0479 20,076.9 19,952.8 19,9474  19,726.6

3.4 Notational reconciliation

To express the problem in the notation of Problem (1), we define the slack
variable z; := s; — x;, which allows us to eliminate the variable s; for ¢ > 1.
The vectors ¢; and z; are defined and redefined, respectively, as

_5t—1y T

. 0K><1 S 2
t 0 B t lt ’

0 My

where I;,m; € R are slack variables. This definition for ¢; is not valid for
t =T, when we have

—0T" (y + 0QTv)
e —(5TPTT'U
T . — 0

0

14




Let
Ay = [ TFK [EXE 0 ]

and b; ;= s;. Then for t =2,3,...,T, we define

IKxK IKxK 00 0K><1
AtI:|: yT 0 ].0:|, bti—:[ 0 },

-7 0 01 0
and
-Q -Pya 00
Ty:=| -pyT 0 00
ay’ 0 00

Finally, setting N := T, we have expressed the problem in the format of

(1).

15




4 Electrical investment planning

Due to Louveauz and Smeers [11]
(Two-stage, linear stochastic problem)
/electric /LandS.cor, /LandS.tim, /LandS.sto

4.1 Description

Louveaux and Smeers [11] consider the challenge of planning investments in
the electricity generation industry. While the model is, in general, multistage,
the specific example given in [11] is two-stage. The general N-stage stochastic
model will be developed in this section and the next, with the specific example
in the following section.

In each stage of planning, investments in n different technologies may be
considered. Technology 7 has an associated random investment cost, ci, a
random operating cost, q;, and an availability factor, a;. The availability
factor is the portion of time during which the technology may be operated.

For planned capacity, a distinction is made between capacity which was
planned before time ¢ = 1, and that which was planned after t = 0. (Here, ¢
is an integer.) The former, g;, includes capacity which exists on the ground at
the start of the simulation, and new capacity that has already been planned.
The latter is denoted by z;. If we let s; be the total capacity, both actual
and on order, planned after ¢ = 0, then we have,

st = a!

and

t__ ot—1 4 t—L; s .
SZ_S’L +.’L‘Z—.'Ez z, Z—'l,.-.,n, t—-2,...,N.

Capacity in technology i also has a construction delay, A;, and a finite life-
time, L;, from planning to retirement. The total capacity for technology 7 at
time ¢ is then (g} + si=%).

Demand for electricity may come in k different modes, and the realization
of the random demand in each mode must be met at each time stage. There-
fore, if we let y;; be the production of electricity in mode j from technology ¢
and let d; be the random demand variable for mode j electricity, we require

nyJ:d;, J:l,,k, t=1,...,N.
i=1
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A production balance yields

k
zyfj < ai(gf + s:_Ai)’ 7 = 1, ce M.
Jj=1

With the constraints listed so far, the problem does not have relatively
complete recourse. To give it such, Louveaux and Smeers [11] add an addi-
tional constraint?. They assume there is a technology, which is always called
technology n, which can always be called upon to meet demand in an imme-
diate way. Therefore A, is always zero. Typically, the investment cost for
technology n is high. To simulate purchased electricity, one may simply let
the lifetime L,, = 1. The added constraint is

n(gt + st,)

|I’Ma~

n—1
ZaZ g+ s ), t=1,...,N. (16)
1

The objective is to minimize the expected value of the future cost, as
represented by the operating and investment costs. The random variable
is made up of the demands (dy,...,d,), and the costs (cy,...,c,) and

(q1> re ;Qn)-

4.2 Problem statement

We have the following definitions:

n = number of available technologies (index 7)

k = number of modes of electricity demand (index j)

N = number of time stages (index t)

g! = capacity of 1 to exist at time ¢, decided upon before ¢t = 1
! = new capacity of 7, decided at time ¢ > 0

st = total capacity, both actual and on order, planned after ¢t =0

¢: = unit investment cost of ¢ at time ¢

t
1
qf = unit production cost of 4 at time ¢
a; = availability factor for 1

2Constraint (16) is not in exactly the same form as in [11]. We have changed it, so that
=t may reflect electricity purchased from the so-called grid.
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L; = life of 7, from planning to retirement

A; = construction time for ¢

d} = electricity demand in mode j at time ¢

yfj = production rate from ¢ for mode j at time ¢
T; = duration of mode j at time ¢

¢* = random variable whose elements are {d}, cf, af, ¥4, j, t}.

We are given all elements of g, T, a, L, and A, with A, = 0. The problem?
is to choose s,z, and y to

N =n k
minimize FE ZZ (cfxf + quT;ny)]
t=1 i=1 j=1
subject to s} = 7}
st=st gl -l i=1,...,n, t=2,...,N
" _
Souh=df, j=1,...,k t=1...,N
i= (17)
k
Zyztj <ai(gf+5: Al)’ Z=1, y 1
i=1
k n—1
anlgh+st) >3 A = i (gt +s5%), t=1,... N

4.3 Numerical results

Louveaux and Smeers [11] present a two-stage example, with £ = 3 operating
modes and n = 4 available technologies. Their example differs from their
general problem development in several ways. There is no immediate source
of emergency electricity, as A; is set to 1 for all i. Additionally, there is a
budget constraint of 120 in stage 1. Also, ¢ and g are not stochastic. All of
the parameters are shown in Table 4.3.

3The term z! in the objective function in (17) is written as s} in [11]. We believe this
to be a typographical error in [11].
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Note that 22 = 0 and y! = 0, and that st = z*. Here £ = (3,5,7) with
probabilities (0.3, 0.4,0.3), respectively. Also note that with all technologies
having a construction delay of 1, 2 should be zero. If the world is ending,
there’s no reason to build a power plant. To force this condition, ¢* may be
chosen to be any positive vector. Therefore, the problem may be reduced to

minimize
10z1 + 7z + 1623 + 624 + E [40y11 + 45y21 + 32ys1 + 55y4
¢

+ 24115 + 27ya2 + 19.2y32 + 33yan
+4y13 + 4.5y03 + 3.2y33 + 5.5v43)

subject to Efsl yir =& 23'=1 Y15 < T
23:1 Yie =3 > im1Y2i S T2
S s =2 D =193 < T3
Z?:l z; > 12 Zj:l Y4 < 1y
10331 + 71132 + 16333 + 61‘4 S 120
z,y > 0.

Louveaux and Smeers [11] report the optimal solution to be

8 10 1T
= (2,4 =2
"E [3”37]

with an objective value of 381.853.

4.4 Notational reconciliation

We make several changes to problem (17) to facilitate its transition into the
format of problem (1). We specify ¢, ¢}, and d; to be deterministic. Further,
we force L; to be a number larger than N for i # n, and L, := 1. Also, let

5 ::{1 if i £n

0 ifi=n
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n |4

E |k

N |2

g' [10,0,0,0]"
g> |10,0,0,0]"
c' [110,7,16,6]"
¢ |[1,1,1,1]7
q' 110,0,0,0]"
¢ |[4,4.5,3.2,5.5]"
a |[1,1,1,1]7
L [12,2,2,2]
Al[1,1,1,1)7
d' [70,0,0]"

d2 | [¢,3,2]"

TV, 1,17

T2 | [10,6,1]7

With these restrictions, we let

Ty ©

-

¢
Ty
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where 2¢ and w' are slack variables. For t =1,2,...,N, let

_Jnxn Jnxn
kan kan
At = onxn O(H—I)Xn
—aney
0 ane)
where
A — [ Jkxk Ikxk:
and
llxn len
. len 11xn
Ol;n len

Additionally, for t = 2,3,... , N, let

r O(n—l)xn
—nxn
]
n
7¥::: kan kan
Qnxn j:'
len T
where
_ _a
T :=
i 0
and
jﬁ ::{ ay Qg

21

Onx(nk)

A

~

le(nk)

O’ILXTL

kan
Jnxn

len

len

len

11xn

Onx(nk)

ka(nk)
Onx(nk)
le(nk)

OnXTL

kan
onxn

len

Onxl
kal

Onxl(

-1

Ikxk ] c ka(nk),

o O O o

Y




Finally, letting

Onxl
dj

di

b: :
¢ algi

fl

t
UnYn

k
| Zj:l d} — D i Gig i

we have put the problem into the format of (1).
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5 Selecting currency options

Due to Klaassen, Shapiro, and Spitz [10]
(Multistage, non-stair step, linear stochastic problem)

5.1 Description

The situation described by Klaassen, Shapiro, and Spitz [10] involves a U. S.
multi-national corporation (MNC), which has significant forecasted revenues
in a foreign currency (FC). If the ezchange rate, S (§US/FC), goes down,
the MNC would face declining revenue versus the forecast. To protect, or
hedge, against this undesirable possibility, the MNC may choose to purchase
options which guarantee a certain exchange rate at some point in the future.
The guaranteed exchange rate is called the strike price, E.

The current time is given the value ¢ = 0, and the time at which the
forecasted revenue will be realized is t = T. The amount of said revenue
is assumed to be known with certainty, and is scaled to be 1 FC. At times
t=20,1,...,7 — 1, the MNC may decide to purchase any of the available
options. These options mature at time ¢t = T'. There are a total of J specific
options packages available for purchase, each with a different strike price.

Of course, the exchange rates for ¢ = 1,2,...,T are unknown at time ¢ =
0, but a suitable probability distribution can be constructed. We enumerate
the possible exchange rate values at each time ¢ as S}, S2,...,SM, for t =
0,1,...,T. Then the set of scenarios

S :=
{sequences s = (Sp, S1,...,57) 1 < S < Ny, Vi=1,2,...,T},

is the set of all possible realizations of a random variable s = (S, Sy, ... ,St).
Thus, the cardinality of S is HtTZO N;. Each realization scenario s specifies
the exchange rate at each time step, and has an associated probability, p;.
For scenario s € S, we denote by s; the partial realization (Sp, Sy, ... ,St).

The decision to purchase options at any time ¢ will depend on the current
exchange rate, and on the type and quantity of options previously purchased.
This, in turn, depends on historical exchange rates. Therefore, the decision
variable Xj,; is the amount of option j purchased at time ¢, based on the
partial realization s; = (So,S;...,S;). This purchase costs P;,; per scaled
unit of currency.
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Because decisions to purchase options are only available through time
T — 1, there is no decision to be made at time T". This allows the constraints
associated with time T to be rolled into time 7" — 1.

For each exchange rate scenario s € S, the MNC must specify an ac-
ceptable effective exchange rate, @Q,, which would include effects of options
purchased as well as the actual terminal exchange rate Sy. This leads to the

constraint

T-1 J
Sr+ Y3 Xy |max{E; — S1,0} - (1+ 7)™ Py > Q, Vs,

t=0 j=1

(18)

where iU5 is the U.S. interest rate at time ¢ for partial scenario s;. The left
side of inequality (18) includes the payoff from options which are active at
St as well as the discounted cost of all options purchased. Since Q; is a
function of random variable S, it is random as well.

Note that the St in (18) implies that these constraints are in the time
stage associated with time 7. However, there are no time 7" decision vari-
ables, so we can write these constraints in the time T' — 1 stage. At that
stage, St is “still” random, as is P, ;. So, the only stage in which constraint
(18) occurs is the stage associated with time T — 1, and moreover, there are
Ny of these constraints.

A further restriction ensures that the MNC does not venture into the
realm of foreign currency speculation. That is, the MNC should only be able
to purchase options to cover a maximum of 100% of the forecasted revenues.

This gives the constraint

-1

~3

J
> X, <1 VseS. (19)
t=0 j=1

[==)

The objective of this exercise is to minimize the expected cost of all
options purchased:

J
ZXSOjPSOj+ lj l: (1+zUS) ZXStJPStJ
j=1

The parameters zUS must be estimated, and for each realization S; of Sg,

T-1

t=1
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the coefficient P;,; is calculated by the following formula, given in [10]:

e—[zftC(T_t)]
— (1 — Cz) [T

t

e [ifts(T—t)]

Ps;j = (1 - Cl) i
J

] ) (20)

where

in(E3/5) + [125 —i£¢ — (7 — ) ()]

= N ’
“ VT —t
In(E;/S) + |15 = £ + (T = 1) ()]
= N )
“ VT — 1

and V; is the volatility of the exchange rate, as measured by the instantaneous
standard deviation of the spot rate as a percentage of the current spot rate.
Here N{z} is the cumulative standard normal distribution function. The
foreign interest rate, i.C is calculated by

iFC .— St (1 + ZZS) _
% E [S¢41]S¢]

where the term in the denominator is a conditional expected value.

5.2 Problem statement

Given all elements of iU%,V, and E, and given a discrete probability dis-
tribution for s and corresponding minimum effective exchange rates @, we
calculate the value of each P; ; from (20). Then the problem is to

minimize

T-1

J
§ : s0j 50.7 E
s

(1+’LUS) ZXSUPSU

t=1
subject to

T-1 J
> X,;j<1VseS

t=0 j=1
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T-1 J
S+ Y Y Xoy [max{Ej — 85,0} — (1+i75)" Pm»] >Q, Vse§

t=0 j=1

Xsj >0 Vj=1,...,J;t=0,1,...,T;s€8S.

5.3 Numerical results

Klaassen, Shapiro and Spitz [10] present a four stage (IT' = 4) example, with
iUS = 0.10 and V = 0.11 for all time periods and scenarios. At time stages
0,1,2, and 3, ten different options are available, with strike prices

(Ey, E,, ..., Ep) = (0.44,0.50,0.57,0.63, 0.70,0.76, 0.83,0.89, 0.96, 1.02).

The scenario tree for the exchange rate S; is given in Figure 5.3. Each
branch of the tree has equal probability. Therefore we have the following
probabilities:

Pso = 1

1/3, Vs,
ps, = 1/9, Vsg,
pe, = 1/27, Vs,
ps. = 1/81, Vss.

>
=
Il

The minimum acceptable effective exchange rates, @, are shown in Table
4, for each complete scenario. Results are given in Table 5. Results for
different values of Q;, iV and V are also given in [10].

5.4 Notational reconciliation

This problem does not fit into form (1), because the last stage (that associ-
ated with time 7'—1) contains constraints of the form (18). These constraints
contain all the decision variables Xj,;, not just X,,_,;. Therefore, we need
“T-type” matrices to connect not only time 7' — 1 to time 7' — 2, but also
time 7' — 1 to each time t < T — 1. We denote such matrices Tr;.
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Table 4: Minimum acceptable effective exchange rates

scenario (t = 4) | Target Exchange Rates Q)

1 0.407

2-5 0.416
6—15 0.423

16 — 31 0.429

32 - 50 0.444

51 — 66 0.466

67 — 76 0.494
77— 80 0.527

81 0.564

In fact, the speculation constraint (19) also contains all the decision vari-
ables. However, with a trick, we can make these constraints fit into the stair
step form of (1). We create a new variable X ; and introduce the constraints

J
XzO = E Xsoja
Jj=1

and

J
X = Xpg—1) + }: Xsijs

j=1

Constraint (19) then may be written

J
Xor-2)+ ) Xopyj S 1

i=1

(21)

With these definitions, we can define, for ¢t = 0,1,... ,7T — 2,

X.Stl

Tiqp1 1= y Ciy1 = [1/ (1 +Zg5)]t

X.stJ
th
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Table 5: Results for Klaassen, Shapiro, and Spitz [10]
All nonzero option purchases, X,,; are shown. Optimal objective value:
0.1057

Option strike prices

Year | Scenario | 0.44 | 0.50 [ 0.57 | 0.63 | 0.70 [ 0.76 | 0.83 | 0.89 | 0.96 | 1.02
2 1 0.03 | 0.47

2 0.04
3 1 0.09

3 0.49
4 3 0.0004 | 0.09

4 0.06

7 0.21

9 0.3110.25

10 0.56 0.03

fort=0,1,...,T —2,

At+1::[—1 e —1 1], bt+1i=0€R,
and for t =2,3...,7 -1,
Tt(t—l) Z:[O e 0 _1]€R1><(J+1).

 In the last stage, that is the stage associated with time T'— 1, we will use
X.(r-1) as a slack variable in (21).

In addition, we will need Ny surplus variables v, for k = 1,2,..., Nr.
That is because, in the final stage we also have the Nr constraints (18). For
k=1,2,...,Nr, define

78tjk = max {Ej - STk;O} - (1 + igS)T_t Pstj’ t= 0, . ,T — 1,
j=1,...,J

where Sty is realization k of Sy, given a partial realization sy_;. Note that
St is random (for ¢ < T — 1), because it is dependent on sz_;.
Let

0 0 - 0 7@
Vel VYse21 0 Vsed1 0
TT(t+1) = Vsi12 Vse22 0 Vsed2 0 ,
| rysthT Ysi2Ng  * " PYSgJNT 0
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fort =0,1,...,T — 2, where

") i {1 t=T -2

The matrix At is defined by

1
Ysp_111
’YST_IIZ

| Vsp_11N7

1

Ysr_121
Vsp_122

Ysr-12N7

0 otherwise.

1
Ysr_1J1
Ysp_1J2

Ysr—1JNr

and the right hand side for this stage is

bT =

1

Qqa —Sn1
Qs2 — S12

| 'QSNT - STNT |

o

The decision and cost vectors for the final stage are

I =

With all of the definitions above, we have transformed the problem into

XST_ll
-XST_lJ
XzT

51
Y2

Yy

,opi= 1/ (14498,

I

_IJxJ :

0

a familiar format. It is a non-stair step version of (MSSLP),

minimize Z(z;) := clz; + Qu(z1)
subject to Aixq =b
T 2 01
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where

Qt(xt—l) = E [Qt(xt—hchbt;At)Tt)] P

{ct bt A, T}

Qt(-’Et—l, ct, by, Ag, Tt(t—l)) =
tierﬁgfnt{czxt + Qt+1(33t) D Ay = by — Tt(t—l)xt—b Ty 2> 0}

t=23...,N-1,

T

On(zNn-1) = E [@Qn(zNn-1,¢N, bN, AN,
{ensbNCANOCTNL TN TN(N-1) }

Tt Tz, - Teew-n)] 5

and

QN(xN—laCN7bNaAN7TN1)TN27' . 7TN(N-—1)) =

N-1
inf {C-I]\';CIIN . ANZ'N = bN — E TNt-'Et,xt > 0}
TN ER™N ey
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|
|
_ 0.37
s; 1
1
0.39
0i39 5
3-5
41
0.42 0
0.43 5 6
1 7-9
3-4 10— 15
0.44 0.4
0.46 &
0.47 5 5 16 — 18
1 3 6—17 19 — 24
8 —10 25 — 31
0.49 0.47 0.46
0.56 0.52 4 11— 12 32 — 37
1 2 5 13— 15 38 — 44
6 16 — 17 45 — 50
52 .
0.55 s 250
0.57 - 18 — 20 51 — 57
3 8 21 — 22 58 — 63
23 64 — 66
55
0.58 s
0.61 51— 9 67 — 72
9 ” 73 —75
76
0.65 0.61
o7 77—~ 179
80
0.68
81




6 Financial planning model

Due to Carifio and Ziemba [4, 3]
(Multistage, linear stochastic problem)

6.1 Description

Carifio and Ziemba [4, 3] describe a model created for the Yasuda Fire and
Marine Insurance Co., Ltd. (Yasuda Kasai) of Tokyo by the Frank Russell
Company (Russell) of Takoma, Washington. The model is a comprehen-
sive investment, liability, and risk planning tool. It is a multistage linear

stochastic model with a steady-state condition imposed on the last stage.

The complexity of the model is such that it cannot be completely de-
scribed in article format. The model presented here is therefore a simplifica-
tion of the original [4], although it is much more detailed than the abbreviated
model presented in an earlier paper [2, Appendix].

Yasuda Kasai offers many types of insurance policies, which differ in struc-
ture and in regulatory treatment. One type of policy is a traditional, non-
savings insurance policy. Premiums from this type of policy go to the Ya-
suda Kasai general account. Other policies are called savings policies. These
policies are really two policies in one, with part of the premium paying for
insurance and the rest constituting a deposit for savings. The insurance por-
tion of the premium goes into the general account, and the rest goes into
one of many savings accounts. The savings accounts are separated based
on regulations, but they are treated the same in this model. Therefore, one
savings account is included in this model.

The general account is divided into a general allocatable account and
a non-allocatable ezogenous account. Funds in the exogenous account may
not be invested. In this problem description, the superscript S will refer
to quantities relating to the savings account, while G and E will refer to
those relating to the general allocatable and exogenous accounts, respectively.
Define V5, V¢, and V;¥ as the market value of the savings, general and
exogenous accounts, respectively, at the end of period .

Fund allocations are not only classified by account, they are also classi-
fied by investment type and asset class. The investment type indicates how
the funds are invested. Money in the savings and general accounts may be
invested either directly (D) or indirectly. There are three possible indirect
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investment types: tokkin funds (T'), capital to foreign subsidiaries (C'), and
loans to foreign subsidiaries (L). So, the four investment types are D, T, C
and L.

In contrast, there are many asset classes, such as domestic bonds, foreign
equity, and real estate. In theory, each combination of account, investment
type, and asset class may have its own fund allocation. However, some of the
combinations are prohibited by regulations. All of the permissible allocations
are indexed, and X,; is defined as the allocation of funds to combination n
at the end of time stage t. The classifications are used in quite a flexible way,
so that n € loans means the set of indexes for all combinations with an asset
class which can be described as a loan, and n € S is the set of indexes for
all combinations involving the savings account. Therefore the market value
of the savings account can be expressed by the constraint

VS-Y Xu=0. (22)

nes

The market value of the general account is written similarly, except that
it includes v¢, the surplus income in the general account. The constraint is
therefore

VE=Y Xu—v7 =0

neG

The random variables in this model have dependence on various rates of
return and other company projections. They are defined in Table 6. Each
has a discrete probability distribution.

The savings and general accounts are modeled by several balance and flow
equations. For example, investment income D,; is defined, for the savings
account, by

Df_f_l = Z RlIne 1 Xne + Z (RIner1 + RPrey1) Xne — IG§+1,
nesSD neST

and for the general account by

DGy =3 RIypaXw+ Y (RIners + RPuoya)Xn — IGE,.

neGD neGI

Here, SD is the set of indices corresponding to direct type allocations from
the savings account, ST is the set corresponding to indirect allocations from
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Table 6: Random variables in Russel-Yasuda Kasai model

Rl ;41 | income return of allocation n from the end of ¢ to the

end of t +1

RP,¢.1 | price return of allocation n from the end of ¢ to the end
oft+1

8t+1 interest rate credited to policies from the end of ¢ to the
end of £+ 1

Fia deposit inflow from the end of £ to the end of t+1
| S principal payments from the end of ¢ to the end of ¢ + 1

L interest payments from the end of ¢ to the end of ¢ + 1
L¢ total reserve liability at the end of ¢
N interest portion of L;

IG¢,; | income gap resulting from the difference between current
market yields and existing loan portfolio cash flows

the savings account, and similarly for GD and GI from the general account.
One of the properties of the indirect investment types is that all price returns
are translated into income. This is not the case for the direct investment type.
Therefore, capital gain

G =Y RPpey1Xp,

neSD

and

(C
Gey = > RPp1Xm,
neGD

includes the price return from direct investments.

Let By be the income accumulated in the savings account through the
end of ¢, and w; be the amount transfered to the savings account from the
general account at the end of £. If v is the amount transfered from the
savings account to the general account at the end of ¢, then

S _ ps s s s s
Bpiy =By + Dy — Ly + Wiy — vy

The transfers, wy and v, from and to the general account, are established
as slack variables in a constraint. This constraint expresses the desire to keep
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accumulated income By, greater than accrued interest liability N7, ;. Since
NS, =N} + g8, ,L{ — If,;, the constraint is

S S S S S
B +Dt+1+wt+1 'l)t+1—_—Nt +gt+1Lt'

The excess accumulated income, vf+1, is in general good, because it con-
tributes to income before taxes. This constraint only occurs when ¢ + 1 is a
fiscal year-end period.

In addition to the income constraint, there is a reserve constraint, which
measures the total reserve shortfall 25, , or surplus g7, ;. These are established
by

VS + Gt+1 t+1 + Zts+1 - (JES+1 =(1+ gts+1)LtS-

A value of zJ,; > 0 represents the undesirable situation where the income
cannot meet the required liability reserve. No funds need be transfered, but
a penalty is assigned in the objective.

Another constraint, the cash flow constraint, addresses the unlikely event
that net pay outs from the savings account, P§ ; +I¢ 41 — F$ ,, exceed the
market value of the savings account itself. A shortfall y7,, would require a
transfer from the general account, while the surplus utSJrl is a slack variable.
The constraint is expressed as

s s s s s
V3 + Gy + Doy + Wiy — vy + Ui — Ui = Pe o+ 15 — F3.,. (23)

Any surplus from constraint (23) is equal to the new market value of the
savings account:

s
Vt+1 Upt-

Let B, represent the income accumulated in the general account from
the beginning of the fiscal year to the beginning of ¢ + 2. Then

0 if £+ 1 is a year-end stage,
B t+l BG G :
v + Dy otherwise,

since the beginning of the fiscal year is at the beginning of ¢ + 2.

Nonnegative income before taxes Y;;; includes any income from the gen-
eral account, and any transfers between the general and savings accounts.
The calculation

s
Yir1 = Ser1 = BY + DE | + vy — wiy
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is made for fiscal year-end stages t + 1 only. Here, s;; is the non-positive

income, should such a dreadful thing occur.
Of course, income should be sufficient to pay dividends to shareholders

and taxes. To encourage such outcomes, let I';;; be an income target, vg_l
be the income in excess of I';;;, and th+1 be the shortfall. The objective
function will include wg,,, along with a cost penalty, and any UEH > 0 will
contribute directly to net worth according to (22). The required income
constraint is

e, G _
Vi1 — e + Wiy — v = e

The amount wZ; will need to be transferred from the exogenous account.
The net worth of the company before taxes and shareholder dividends is

gZ,. It is defined by the constraint
VE +VE + GSy + DL+ G — Zon1 + 2 — €6 = L¢,

where ng represents a negative net worth, a dire situation.

Cash flow must also be balanced in the general account. Taxes are as-
sumed to be a constant 7 times income before taxes. Dividend payments to
shareholders are included in Pg, . Therefore, we have the constraint

G, AG G s s s G
V& + Gy + Dy — TV + 0 — Wik Y W

fe. G _ pG G
Y1 — U = Py — Feae

A positive value for th+1 would be very serious, as that amount would have
to be transferred from the exogenous account to pay all the bills. The excess
utG_H is, as with the savings account, a slack variable which represents the
accumulated market value of the general account. So,

G __, G
V;+1 = Ugy1-

The accumulation constraint for the exogenous account includes kf,;, the
projected increase in the exogenous account:

E _ E el G E
Vit = V& —wiy — Yo + ki

In addition to the flow, income and accumulation constraints, there are
many other constraints in the model by Carifio and Ziemba [4]. These con-
straints find their origins in external and internal regulations and policies.
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For example, since loans are a particularly illiquid asset class, an internal
policy limits the change in allocations to loan asset investments from one
period to the next. With /b and ub being constants defined by the policy, the
constraint

Ib(1 4+ Rlyey1 + RPyiya) Xy < Xppr <
ub(1 + RIpts1 + RPyty1)Xnt, n € loans
is added to the model.
The objective is to maximize the market value of the accounts at time
T and minimize the costs involved with shortfalls, while meeting all the

constraints. Let c5,, c5;, c5,, ¢G;, &, and ¢, be the cost parameters associated
with shortfalls w?, y7, 27, w, 28, and yC, respectively. Let

. S$.8,.8.8, 8.8,.G,G, GG, .G, G
Cy = Cpuwy + Culy + Cp2y + CuWy + €32y + Cyily -

Then the objective is to minimize the expected value

T
E |-VE-VE-VF+> 1+pnVNC, +aCy |,

=2

where 1 is the discount factor, the function N(¢,T') gives the number of years
from stage t to stage T, a is the discount factor for the end-effects period,
and Cj is the cost of shortfalls for the end-effects stage.

6.2 Problem statement

Given constants b, ub, 7, kE, and I';, costs and given discrete distributions
for the set of random variables

R := {RI,, RP,, IG5 F5 PP I§ gl LY, IGE , FE,PE
t=1,2,...,T;for all n},

the problem is to

T
minimize E |-VF -VE-VF+ Z(l + )NEDC, + aCy (24)

R

t=2
subject to Vts — ZXm =0
nes
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> Xu—vf =0

neG

D,y = Z RlIney1 Xne + Z Rl 1 + RPoey1) Xn: — IGE 4

neSD neSI

DEH Z RIngp1Xn: + Z Rl i 1+ RPoey1) X — IGt+1
neGD neGI

Gt+1 = Z RPyui 11X

neSD

Gt+1 = Z RPut1Xn
ne€GD )

B}, =B/ + Dt+1 It+1 Fwhy — Uiy
Bf + D}y, + Wiy — Vi = Nf + g8, Lf
1A + Gt+1 + Dt+1 + Zt+1 G = (1+ gts+1)LS

S s
VS + G5y + DSy +wlyy — v +yi — ui = Po + I — Feo
s s
Vit = Ui
B 0 if t +1 is a year-end stage,
t+1 G G .
By + Dy otherwise,

Vi1 — st = BY + Dt+1 + 05 — Wi
Yitr — Sp1 + wt+1 - UtG+1 =T
VE+VE + G, +DC + ¢y — 20y + 281 — ¢y = L
Ve + G + Dy — Y + U29+1 Wiy — Yo + Wi
Y1 — ugy = Py~ F,
Vt+1 = UtG+1
Vt+1 = VE wt+1 yt+1 + kt+1
Ib(1 + RIpg1 + RPpy1) Xne < X <
ub(1 4+ RI 41 + RPyty1)Xne, n € loans

s .s.s S .S ¢ .G .G G, G, G
Xnt7wtavtzt7qt,ytautay:‘,astawtavt7zt7qt’yt7ut > 0.
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6.3 Numerical results

The model described here is too complex for us to create empirical data at
this time. Further, the original creators of the model [4, 3] did not provide
specific problem data. .

6.4 Notational reconciliation

In order to put this problem in the notation of (1), we make a few changes
to the problem:

1. Assume each period is a year-end stage. This assumption is not nec-
essary, but we are required to state which stages are year-end, and
which are not. The result of this supposition is the elimination from
the problem of the variable BS and the equation (27).

2. The end-effects stage is eliminated. This eliminates the term aC i from
the objective.

3. Equations (26) and (29) are eliminated by substituting V' for u in equa-
tions (25) and (28).

4. The conditions (30) constraining the loans are eliminated.

Order the number of accounts in any way, and let M be the number of
accounts. That is, the index n runs from 1 to M. Define the vectors

X1t RP;:
X, = X,Qt , RP; = R].?zt )
X;m Rl:;Mt
and
RI;;
RI, i R:!:Zt
Rth
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Let A € RM*M pe the diagonal matrix defined for sets
® e {S,G,D,I} by

1 if account j is in set ®
(A%)j5 = {

0 otherwise.

Then we may express the sums from the problem statement in Section
6.2 in matrix notation. For example,

> RIyq1Xn = (RI) TACAPX,.
neGD

To begin putting the problem into the notation of (1), set

Mx1
0 0
, €= 0 , blzz[o]
0

X1
Vls

and
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Then for t = 2,3,...,T, define

r Xt . - OMXI
B? 0
DS 0
G? 0
|74 —0r
¢ 0
Uf 0
wp (1=7)" g
Yp (1- 7)T"tC§t
2y (1=t
z,:= | DF |, and RS 0
G¢ 0
Ve —0s
¢ 0
th 0
'th (1- 'Y)T_tcgt
Yo 1=y e,
2 (1-m"te
VQE —0r
Y, 0
L St i | 0

where

1 ift=T
(StTIZ{

0 otherwise.

The remaining assignments necessary are

At::[AtS AtG], Tt::[Tts TtG],
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and
i 0
0
~-1G$
~IGE
0
0
.
(NS, +8fL{ ) |,
(1 +gd)Ly)
(PP + 1P — F)
0
r
L¢
(PF — F)
kE

bt:

where A%, AG, T, and T, are defined in Figures 1, 2, 3 and 4, respectively.

Figure 1: Array A? for Russell-Yasuda Kasai example

[ (-10*M)AS) 0 0 0 1 0 0 0 0 0
(-10xMAGYy 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 O 0 0 0 0 0
0 0 0 1 O 0 0 0 0 0
0 0 0 0 O 0 0 0 0 0
0 1 (-1) 0 0 0 1 (-1) 0 0
A7 = 0 0 1 0 0 0 0 (-1) 1 0
0 0 1 1 0 (=1) 0 0 0 1
0 0 1 1 (-1) 0 (=) 1 1 0
0 0 0 0 O 0 (-1) 1 0 0
0 0 0 0 O 0 0 0 0 0
0 0 0 0 O 1 0 0 0 (-1
0 0 0 0 O 0 1 (-1) (<1) ©
I 0 0 0 0 O 0 0 0 0 0 |




Figure 2: Array AY for Russell-Yasuda Kasai example
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Figure 3: Array TS for Russell-Yasuda Kasai example
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Figure 4: Array T for Russell-Yasuda Kasai example
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7 Design of batch chemical plants

Due to Subrahmanyam, Pekny, and Reklaitis [17]
(Multistage, mixed integer linear stochastic problem)
/chem/chem.cor,/chem.tim,chem.sto

7.1 Description

Subrahmanyam, Pekny, and Reklaitis [17] describe the design of a batch type
chemical plant to produce products for which we do not know the future
demand. We present here only half of the problem given in [17], the “Design
SuperProblem.”

We must decide how many plants to build, of what type, when to build
them, and how to operate them. Therefore the problem has some integer
decision variables. Let n; be the number of new units of equipment type
j to come online in time stage ¢. This must take only integer values. The
cumulative number of units of type j at time ¢ is defined as

t
th = an»r, VJ,t
7=1

The various plants can perform different tasks, which are indexed as 7 =
1,...,I. Certain plants can perform more than one task. Let Ij'-‘aSkS be the
set of tasks from 1 to I which can be performed by a plant of type j, and let
I7*P be the set of plant types from 1 to J which can perform task i.

We must decide which tasks to perform on which equipment during each
time period. Let y;;; be the number of times task ¢ is performed on equipment
type j during time stage t. If p;; is the processing time for task ¢ with
equipment type j, and if H; is the length of stage ¢, then

Z DijYijt < HiNjy, Vj,t.

; < rtasks
zEIj

This constraint enforces the fact that time is limited in each stage. Something
else which might limit the number of batches is the much feared operating
expense budget. Let C7 be the total operating budget per plant for time ¢,

and let c7; be the operating expense incurred for using equipment type j to
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perform task ¢ in stage . Then the operating expense constraint is
Do Y iSOy Nip, Vi
J o deriesks j

The material balance on the system includes inventory, production, con-
sumption, sales, and purchasing effects. Let B;;; be the amount of task :
performed on plant type j in stage ¢, measured in somewhat arbitrary reac-
tion units. If f; is the stoichiometric ratio representing mass of resource s
produced per unit of reaction ¢, then the amount of s produced in stage ¢t is

E E fsiBije-
7 jelfq“ip

Note that f; is negative if resource s is consumed in task i. The mass of

resource s in inventory at the end of stage ¢ is Ay, with maximum limit AH>.

The material balance constraints are then

Ast = As(t——l) + Z Z fsiBijt - q:t + qgt; VS1 t’

1 j€ reauip
1
and
max
Ast S Ast ’ VS,t,

where g%, is the mass of resource s sold in stage t, and ¢’, is that bought in
stage .
The relationship between B;;; and ;5 is

Biji < mijyije, Vi, 5,8
Here, m;; is the capacity of equipment type j to perform task 7, measured in
units of reaction per batch.
There are a couple ways to limit purchases. One is to simply impose a
limit, as in
qzt < Qit; Vs, t,

for some constant Q%,. Another is to limit capital expenditures to not exceed
a constant MC;, as in

Z Cjengt + Z vhal < MCy, V.
J s
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The symbol Cj; is the capital investment cost for a plant of type j in stage
t. The term %, is the value of purchased resource s in stage ¢ per unit mass.

One of the random variables in this problem is the demand, Qg, for
resource s at time t. The index k determines the scenario. The other random
variable is v%,,, the price per unit mass of resource s sold at or below the
demand level QS,, in stage t. We define a new random variable by rg =

(Qke» Vare)-
The recourse variables are ¢°3,, the amount of s sold in stage ¢ which does

not exceed demand, and ¢Z};, the amount which exceeds demand. Essentially,
g2, is given away, rather than sold, as no credit toward profit may be taken
for this quantity. The recourse variables are limited by the equation

qjt = Q:Igt + qzl;l-t, V37 ka t’
and the inequality
Gne < Qi Vs, kst

In some industries, it is important that the demand be met exactly. For
such cases, define the variable

1 if for each s, ¢%, = Q3
Tt =
Kt 0 otherwise.

Then we can set a guarantee index Gy, to serve as the minimum number of
scenarios for which the demand may be met exactly. We get the constraint

Zxkt > Gt7 Vt.
k

The objective function,

T N J I
Z { E Z(V:ktqggt — vlab) — Z (nj(t+6)0jt + Z C?jtyijt)] } ;

t=1 s=1 j=1 i=1

is the net present value of the facilities, and includes potential income, capital
expenditures and operating expense. It contains no first stage objective
terms, and should obviously be maximized. Note that ¢;; = 0 if we cannot
perform task i with equipment j. Here, d is the construction delay once the
plant has been ordered.
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7.2 Problem statement

We are given a discrete probability distribution
{(Petyrsit) : k=1,2,..., K}

In addition, we require constants c7;;, v vb,, Cjt, pijy Hiy CF, foi b, ABX m.,
Gy, MCy, and §, and the index sets I}**** and I Then our goal is to
maximize

T
>4 F

t=1 i

S J I
Z(v:ktngt - U:tqgt) - Z (nj(t+6)cjt + Z cgjtyijt>j| } )

s=1 j=1 i=1

subject to

Z DijYije < HiNy, Vi,

: ~ Ttasks
i€l ;

Z Z cz]ty1]t<c ZNJt’ Vt (31)

J zeItasks
t
th = Z’I’le, Vj,t (32)
T=1
Ay = As(t-l) + Z Z JsiBijt — gst + qgt: Vs, 1 (33)
i jeIfq“ip

Ast S A;‘za‘x, VS,t
Biji < myyize, Vi, 5,8
qst qskt + qskt’ VS, k’ 3

stt < Qexts Vs, kit
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Qgt < Qgt: Vs, t

> Cunp+ Y vhab < MCy, Vi (34)
ki s
1 if f h 0 — Qs
Ly = if for EE-LC Sy Qopr = Qe (35)
0 otherwise

Zxkt Z Gt, Vt (36)
k

Ag, b5, >0, Vst
Ohe a5 > 0, Vs, k,t
B >0, Vi,j,t
Njt, njg, Yije € Z*.

7.3 Numerical results

Subrahmanyam, Pekny, and Reklaitis [17] present a problem with I = 4
tasks, S = 7 resources, J = 3 equipment types, T' = 2 time stages, and
K = 2 scenarios per stage. Operating costs are neglected, so c¢f;, = 0 for all
cases, and (31) is removed from the problem. Also, the construction delay ¢
and constraints (34), (35), and (36) are not included in the problem.

The parameters for the problem are shown in Tables 7, 8, 9, and 10. Note
that resources 1 and 2 must be purchased, resources 4 and 7 are sold, and
the remainder are intermediate resources.

Additionally,

A =400 Vs,t,

H1 = H2 =80 days,
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Table 7: Probability distribution for random variables (demands not shown

are zero)
kt | Pt | Qixe | @7kt | Vike | Vike
11(04| O 0 {51170
2110.6 | 150 | 200 | 58 | 80
12(04| O 0 |50 |71
22 0.6 | 150 | 200 | 59 | 81
Table 8: Parameters for purchased resources
st Ugs 213
11| 23 | 200
12| 24 | 200
21| 25 | 250
22| 26 | 250
P11 = Pa1 = P12 = Paz = Pa3 = P33 = 4,
I{;asks — Igasks — {1’4},
and

I = {2,3}.

The optimal objective value stated in [17] is 3300, with optimal values of
N21 =1 and N31 =1.

The problem chem in our collection is an attempt at recreating this exam-
ple. We have not been able to verify that we have succeeded in this attempt,
as we have only run chem as a continuous model. The optimal objective value
for chem as a continuous model is 13009.16667.
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Table 9:

Ch

Cj2

m; jV’l:

2500

2600

100

3000

3100

200

LI DN | =%,

2800

2900

150

Parameters for equipment types

Table 10: Stoichiometric coeflicients f;

Ns| 112 [3[4]5]6 |7
1 [-1]-1] 1|0[0|0]0
510]0|—1]1]1]0]0
30 |-1]0]0[—1]1]0
400 ]o0]o0]0 [-1]1

7.4 Notational reconciliation

For simplicity, equations (35) and (36) are removed from the problem, and §
is set to 0. The transition of notation is then quite straightforward. Define
the diagonal matrix A% e R™ by

1 ifie I;-asks
0 otherwise.

(A;a'Sks)l’I/ = {

Then, we make the following definitions, and also introduce slack variables

ul,u?, ...,

Pij
Prj 0
Y1t

Yt == : ;
Yt
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By = ;o Nes=| 5 m
By Ny
i
Use
up = | i=356 =
t T : y o — 9,4 Y, t
i
Ugy
4
Uyt 0.
4 15t
4 Ujat o ;
Uy = : ) cjt - . ) Ct
* 0
4 Crjt
Urst
Cit Ay
Ct = ; At = : A;ﬂa.x .
Cri Asgt
; [ Qs b
1kt 1t
5 ._ . b .
Qt T . ) t " . 9 ’Ut
s b
| skt St
- ,
Vikt a1¢
—_ . s . . s0
i Vi = . ) q; = ) gz
s s
| | Vskt st
mi

tasks
Al )
tasks
A2
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qg'-lt:—t 0
fsl
fs = ;o Fe= f;r [ Agmks Ag%ks :
f.sI

Nt

Nt

mry

A.t]a,sks }

tasks
AJ




Then, let

Ty = q£+ , and ¢ =

L U B

0
_Ct

) OJxl

“Ch
Ole
OIJxl
Ole
b

s
Vi
Ole
OJxl

0
Ole
OIJxl
OSXI

Ole
0

(37)

We assign A, according to Figure 5. The vertical lines separate parts of
the matrix according to (37). So, for example, the second partition of the
matrix corresponds will be multiplied by N;. All blanks are zero. Note that
the double sum in equation (33) may be expressed as

Z Z fsiBijt-

j iEI‘EaSkS
2

The transition matrix T} is defined in Figure 6. There are only two
nonzero entries. One is from (33), and the other is from (32), which may be

rewritten

th = th—l + Njt.
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Our transition to the notation of Problem (1) is complete if we set

OJXJ h
0
OJxJ
OSxS
Amax
by := OI}xIJ
OSXS

Qt
Q}
| MG,

59




1
oxgl
gxgl
rixerl
sxgl
1
- NJXNHN‘
1(g2) 0 |
sxgl
sxgl
sxsl— | gxgl— sxgl
cixrerd N—
sxgl
m.x.m..Nl mxm_N H— m,me
rxel= | pxpl
HXHH% - mxwﬁqg.@uv
HXNN»NHN| mxwﬁAw.h.& A

o[durexs Suruue[d uSisep [edTWEYD 10} */ ARITY :G 2InSI]

”w<
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Figure 6: Array T; for chemical design planning example
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8 Energy and environmental planning

Due to Fragniére [5]

(Multistage, linear stochastic problem)
(/env_det.aggr
/env.sto.imp
/environ/env.cor,/env.tim,{ /env.sto.loose
/env.sto.lrge

| /env.sto.xlrge

8.1 Description

The model by Fragniére [5] assists the Canton of Geneva in planning its en-
ergy supply infrastructure and policies. The model is based on the MARKAL .
(market allocation) model. This is quite an extensive model, containing a
great degree of realism. Included is the possibility that emissions of green-
house gases will be required to decrease. This possibility is expressed in a
discrete random distribution.

The model includes equilibrium constraints, capacity expansion constraints,
demand constraints, production constraints, and environmental constraints.
Energy is supplied by many different technologies, including hydro power,
cogeneration, fossil fuels, urban waste incineration, and imported electricity.
Demands are also classified by technology. Examples are electricity for in-
dustrial use, gas furnaces in existing houses, and wood stoves in new houses.
Variables expressed in upper case letters are decision variables.

An energy balance may be performed on the supply grid, for each energy
type. For types k which are neither electricity nor low temperature heat, the
balance yields

Z outki (t)R(t) + Z outki(t)cfi (t)C’z (t) + Z IMPks (t)

i€TCH i€eDMD
i¢DMD
> N inpu®P) + Y inpu(t)efi()Ci(t) + Y EXP(t),
i gﬁ% i€DMD s

Vk € ENC,Vte T, (38)
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where the variables and sets are defined in Table 11 and Table 12, respec-
tively. Note that for i € DM D, the term C;(t) refers to the installed delivery
capacity, whereas for production type technologies, it refers to the installed
production capacity.

For electricity and low temperature (district) heat, the energy balances
are

Z Pzzy +ZIMPELCszy( Z Z ian‘LC,i(t)QZyPi(t)

i€ELA i€PRC
+ Y inpprci(t)efi(t) friwCi(t) + Y EXPELCyy(t)
i€eDMD k
+n Y ePu(t), Vz€ZVyeY,VteT,
iESTG
y=n
and
Y Z Pzz Z anLTHz sz Ef’rj(z)zya
i€EHPL zEDMD yeY
Vze Z,VteT,
respectively.
Table 11: Variable definitions
P;(t) the activity, or utilization, of technology ¢, in period ¢
Py () the production of electricity from technology %, in pe-
| riod ¢, season z, and part of the day y
P, (t) the production of low temperature heat from technol-
ogy 1, in period ¢, season 2
Ci(t) the total installed capacity of technology ¢ in period ¢
M, (t) production lost due to regular maintenance of technol-
ogy 1 in season z, period t
I M P(t) imported energy of type k in period ¢, from source s
IMPELC,,,(t) | imported electricity, from source s, in period ¢, season
z, and part of the day y
E X Py(t) exported energy of type k in period ¢, to destination s
(continued on the next page)
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Variable definitions (continued)

EXPELC,,(t)

outy;(t)

outx (1)

inpki (t)

Cfi (t)
QZy

3 (@)

FTiti)zy

€;

3

exported electricity, to destination s, in period ¢, sea-
son z, and part of the day y

output of energy type k in period ¢, per unit activity
from technology i ¢ DM D, or per unit capacity from
1€ DMD

fraction of demand technology 7 which supplies utility
demand k € DM in period ¢

input of energy type k in period ¢, per unit activity
from technology ¢ ¢ DM D, or per unit capacity from
1€ DMD

mean utilization factor of the total installed capacity
for technology 1 € DM D in period ¢

the fraction of a year covered by season z, part of the
day y

utility demand category j(:) € DM, for i € DMD
fraction of the utility demand from category j(z) which
comes in season z, time of day y

the electricity input required at night to produce one
unit of electricity in the daytime from technology ¢ €
STG

efficiency coefficient for electrical distribution
efficiency coefficient for low temperature heat distri-
bution

efficiency coefficient for district (low temperature)
heat distribution

duration of equipment ¢, in time stages

new capacity purchased for technology ¢, starting in
period £

capacity which existed at the beginning of the opti-
mization problem

demand for utility kK € DM in period ¢

availability factor of technology ¢ in period ¢

the fraction of a year that technology i is lost for pro-
duction, due to one unit of unavailability

conversion factor from units of capacity to units of
production

(continued on the next page)
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Variable definitions (continued)

er

hr
pk;(t)

epk;(t)

el fie (%)

bl

a

n
invcost;(t)

fizom;(t)

varom;(t)

costys(t)
costgrc,s(t)
pricegs(t)

pricegs(t)
co2;(t)

limitcog (t)

reserve capacity necessary to cover daily peak demand
for electricity

reserve capacity necessary to cover daily peak demand
for low temperature heat

fraction of installed capacity for production technol-
ogy 1, available to satisfy peak demand in period ¢
fraction of electrical consumption for production tech-
nology %, which corresponds to peak consumption in
period ¢

fraction of capacity for demand technology i, which
corresponds to the peak consumption in period ¢
maximum fraction of nighttime electrical production
from technologies : € BAS

annual discount rate

number of years per period

cost per unit investment in technology ¢, period ¢
fixed annual operation and maintenance costs for tech-
nology i, period ¢, per unit capacity

variable annual operation and maintenance costs, per
unit production, for non-demand technology i, period
t

unit cost of energy type k, purchased from source s in
period ¢

unit cost of electricity, purchased from source s in pe-
riod ¢ ‘
unit price of energy type &, sold to source s in period
t

unit price of electricity, sold to source s in period ¢
carbon dioxide emissions per unit capacity, from tech-
nology ¢, period ¢

limit imposed on carbon dioxide emissions in period ¢

The capacity of each technology was either installed after the beginning

of the optimization problem, or it was there from the beginning. From this,
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Table 12: Set definitions

ENC the energy types, except electricity (FLC) and low
temperature heat (LT H)

T time periods

TCH supply and demand technologies

DMD demand technologies

DMD(k) | demand technologies which can only supply utility de-
mand k € DM

DM utility demands

Y parts of the day (d for daytime, n for nighttime)

VA seasons of the year (w for winter, s for summer, ¢ for
intermediate)

ELA technologies that produce electricity

PRC energy production technologies

STG technologies that effectively allow the storage of elec-
tricity

HPL technologies which produce low temperature heat
(LTH)

CON technologies which produce electricity and/or low tem-
perature heat

BAS electrical production technologies which produce only
at a steady rate, day and night

cO2 technologies which emit carbon dioxide

we get the constraint

t
Ci(t) = > I;(m) + resid;(t), Vt € T,Vi.
m=Max{1,t—1;+1}

We must meet the demand for each utility in each round. Thus,

S G+ ), outw(t)Ci(t) 2 demand(t),

i€ DM D(k) . é%?v%l()k)

Vk e DM,VteT.
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Of course, we cannot produce more than the capacity. For general pro-
duction technologies, this constraint is

Pi(t) < afi(t)Ci(t), Vie PRC,VteT.

For technologies that produce electricity, the production constraint is

A2y
Piz t+(——)§uiz 1-—1—0,,'25 OiCit,
)+ (2 ) gy (1= [1 - afi(9)] f0) Ci)
Vie ELAVz€ Z,VNyeY,VteT.

The second term is the production lost due to maintenance.
Similarly for technologies that produce low temperature heat,

Vie HPLNz€ ZNteT.

The following constraint pertains to maintenance.

ZMw(t) Z [1 - afz(t)][l - fOz]’U,ZCZ(t), Vi € CON, VteT.

z2€Z

On any given day, the peak demand level is, of course, higher than the
daily average demand. The capacity for production of electricity must be
sufficient to cover peak demands, which occur during the day in both winter
and summer. The constant er sets how much higher than daily average
demand levels the peak can be. The peak constraint for electricity is

Z wiph; (t + — Z IMPELC,4(t)| >

1EELA

Z anELC’z( )epk( )P( + —ZEXPELCszd( )

1€PRC

+ Z nperc,(t)el fia (t)cfilt) (M> Ci(t),

i€DMD Ged
Vz € {w,s},VteT.
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The peak demand constraint for district heat is

P Z u;pk; (t)Ci(t) >

1+ hr i€HPL

ieDMD Guwd t Qun

where hr is the analog to er for electricity. .

Some types of electrical production technologies, here called BAS, can
only operate at a constant production level, day and night. We may desire
to limit the percentage of production from such technologies, since they do
not give hour to hour operation flexibility. The upper bound, bl is used in
the following constraint:

3" Pun(t)+ Y nIMPELCyn(t) — EXPELCsun(t)

| 1€EBAS

<O | Y Pun(t)+ Y nIMPELC(t) — EXPELC.n(t) | ,
t€eELA s
Vze Z,NVteT.

Fragniére [5] states that the production of greenhouse gases is limited,
but we were unable to.find an explicitly stated constraint. Therefore, we
propose our own of the form

3 co2t)Ci(t) +8Y Y Y IMPELCs(t) < limitcoa(t), Vt€T.
1€CO2 s 2€Z yey
(39)

The second term on the left hand side represents the possibility of imported

electricity counting toward the CO, limit. Random 4(t) € (0,1) represents

the probability of such a rule. Of course, §(1) = 0 with probability one.
The objective is to minimize capital and operating costs, which can be
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expressed as

Z W Z invcost; (¢)I;(t) + (Z(l +a)1—m)

teT i€TCH m=1
: [
D T | 2 fisomCi®) + > varom(® )+
teT (1 +a)nt=d icTCH i€PRC
Z Zvaroml Z Z Z varom;(t) Py (t) +
i€cHPL z€Z 1€EELA z€Z yeY
Z Zcostks (t)I M Pys(t +ZZZcostELCs (t)IMPELC,,(t) —
kEENC s s 2zE€EZ yey
> > pricers(t) EX Pys(t) —
kEENC s

Z Z Z pricepre,s(t) EXPELC,,y(t)

s z€Z yey

8.2 Problem statement

We present a problem that is not as elaborate as that created by Fragniére [5].
It corresponds to the numerical examples given in the “Numerical examples”

section.

65




Minimize

Z m})‘m Z invcost; (t)I;(t) + (Z(l + a)l‘m)

teT i€TCH m=1
1
Z(_l——;a)—"(t—ﬁ [ Z fizom;(t) Z varom;(t) P;(t)+
teT icTCH i€PRC
Z E:varom2 Z ZZ varom;(t) Piy(t) +
t€HPL z€Z 1€ELA 2€Z yeY
37 > costra () IMPs(t) +Y Y D costrrc,(()IMPEL sy (t) -
keEENC s s 2€Z yecY
Z Zpriceks(t)EXPks(t) —
k€eENC s
YN priceprc,s(t) EXPELCq (1)
s 2€Z yey
subject to ‘
Z outy;(t) Pi(t) + Z outr; (t)cfi(t)Ci(t) + ZIMPkS t)
i€TCH i€DMD
i¢DMD
> Y inpu@®P) + Y inpr(t)efi(t)Cilt) + Z EX Pys(t),
ieTCH i€DMD

Vk € ENC\Vt €T,

n| > Piylt) +ZIMPELcszy() > Y inpproi(t)gy Pi(t)
i€ELA 1i€PRC

+ > inperci(t)efi(t) friwxCi(t) + }:EXPELCkzy(t)

i€EDMD

+n Z € zzdty Vze Z,VyeY,VteT,
STG

v 3 Pu(t)> Y imprraa(t)efi8)Cilt) Y friye,

i€HPL i€DMD yey
Vze Z,VteT,
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t
Ci(t) = > I;(m) + resid;(t), Vte T,Vi,

m=Max{1,t—;+1}

> c Y outy(t)Ci(t) > demandy(t),

i€eDMD(k i€DMD
i¢ DM D(k)

Vke DMVt e T,

.Pz(t) < afi(t)Ci(t), Vie PRC,Vte T,

Qzy
-Piz t S UGy (1 = [1 —af; i) Cilt),
0+ (=) < gy (1= 1= afi0) 1) Cilt)
Vic ELANz€ ZNye Y.Vt eT,

S°Malt) > [1 - afi(Ol[1 ~ fouiCilt), Vi€ CONVteT,

zeZ

n
1+er

D wpki()Cilt) +—ZIMPELcszd() >

i€EELA

Z inperc,(t)epk:(t) Pi(t) + _ZEXPELCszd( )

t€PRC

-+ z ianLC’i(t)elfj(i)(t)cfi(t) (M) Ci(t),

i€DMD 9zd
Vz € {w,s},Vt €T,

S° inpuraa(t)ehi(t) ( Iriud +J ’"j‘”"’") Cilt), WteT,

i€eDMD Qud + Qun
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3" Pun(t)+ Y nIMPELCqu(t) — EXPELCyn(?)

i€EBAS s

<tl| 3 Pun(t)+ Y nIMPELCsn(t) - EXPELCsn(t) | ,
i€ELA s
Vze Z,VteT,

3" co2(t)Cilt) +8(8) ) 3N IMPELC,.,(t) < limitcoa(t), Vt€T

1€CO2 s z2€Z yey

and for allt € T,

P(t) >0, Vi € PRC, () >0, Vi€ TCH,
Ci(t) >0, Vi e TCH, P,(t)>0, Vie HPL,Vz € Z,
Po,() >0, Vi€ ELANz € Z,Vy €Y, IMPy,(t)>0,Vk € ENCVs,
IMPELC,,,(t) > 0,5,z € Z,Vy €Y, EXPy,(t) >0,Yk € ENCVs,
EXPELC,,,(t) > 0,Vs,Vz € Z,Yy €Y, (1) =0.

8.3 Numerical examples

The problem created by Fragniére [5] for the Canton of Geneva is extremely
large and complex, and the input data format is not SMPS. Therefore, we
have created our own sample problems of this kind. The numbers in this
example are based on the authors’ judgment, not actual economic data.

The example creates a situation similar to that experienced in the United
States, where oil imports (OIL) are the largest source of energy. Other
imports are coal (COL), natural gas (NGS), propane (PRO), nuclear fuel
(NUF), and electricity (ELC). There are no exports in this example.

The energy types allowed are electricity (ELC), gasoline (GAS), coal
(COL), heating oil and diesel (HOL), natural gas (NGS), propane/LPG
(LPG), jet fuel (JET), and nuclear fuel (NUC). When one unit of oil is
imported, the following portions of hydrocarbon based energy types are as-
sumed to be gained: 0.45 gasoline, 0.25 heating oil/diesel, 0.10 natural gas,
0.10 jet fuel, and 0.10 propane/LPG. The inequalities of type (38) must take
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this into account. For example, the inequality balancing natural gas is

0.1OIMPOIL (t) + IMPNG Z inpNGs,HNG (t) CfHNG (t)CHNG (t)
+ inpnas,NeL (t)cfnes (t)OneL (t).

The available technologies are listed in Table 16, along with their asso-
ciated coefficients for the example problem. Other coeflicients are listed in
Table 13, Table 14 and Table 15.

There are several two stage versions of this problem in the test set.
They differ in how stochasticity is introduced. The problem env:loose, us-
ing the stochastic file env.sto.loose, simply assumes very non-challenging
(i.e. loose) CO, limits. The problem env:aggressive (env.sto.aggr) sets
aggressive CO, limits. Each of these has five random realizations, and the
parameter §(t) takes a value 0 with probability one.

The problem env:import (env.sto.imp) uses the aggressive CO, lim-
its, and, in addition, considers the possibility that imported electricity (IM-
PELC) will be counted toward such limits in period two. That is, 6(2) takes
a nonzero value with nonzero probability. This problem has fifteen random
realizations.

The problem env:large (env.sto.lrge) builds on env:import by making
random the costs of various energy sources. The number of realizations is
8,232. The problem env:zlarge (env.sto.xlrge) is a larger version still,
mostly to test distributed memory capabilities of the solver.

Table 13: Example problem seasonal coefficients

sumimer winter
day night day night
Qzy 0.60 040 040 0.60

costgrc 5.2 5.0 4.8 4.6
freLcey 035 025 0.10 0.30
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Table 14: Example problem demands

k  demandr(l) demandy(2)

ELC 170 230
HHO 30 30
NG 15 25
GAS 60 80
LPG 3 3
JET 10 20

Table 15: Example problem coefficients

a 0.05
) 5
n 0.80
€HYD 0.10
er 0.20

costorn, 0.8
COStCO AL 0.7
COStNG 0.6
costpro 0.7
coStNUF 0.9
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8.4 Notational reconciliation

Because of the size of the problem, we reconcile only the problem from the
Numerical examples section to the format of (1). In this section, we will use
“ELI ... HYD” to denote the set of technologies listed in Table 16, in the
order presented. We will also use “OIL ... ELC” to denote the imports,
and “ELC ... JET” for the demands in Table 14. Additionally, “WD ...
SN” will mean the sequence “WD, WN, SD, SN,” and “CEL ... HYD” will
stand for the sequence of electricity producers “CEL, NEL, NUL, HYD.”
These abbreviations will make our arrays smaller to print.

We will also use the notation e; to mean the unit vector in the sth direction

from the space R2.
For t = 1,2, make the following definitions:

] Ixri(t) | [ r(t)invcostrLi(t)
Inyp(t) r(t)invcostayn(t)
Crri(?) ' s(t) fizomgri ()
Cuyp(t) s(t) fizomuyp (t)

PcrL,wp (1) s(t)varomcgy(t)

i Pegrsn(t) | I s(t)varomcew(t) ]

Ty = , Ct 1= . ,
Puypwo(t) s(t)varommyp(t) 1
Paypsn(t) s(t)varomuyp(t)
IM Por, (t) S (t) costolL
IM Pyur (t) v S(t) COStNUF
IMPELCwp(t) s(t)costeLc,wp
| IMPELCsx(t) | s(Y)costecsy |
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where r(t) := (1 + o)™V and s(t) == (i(l + a)l“m> r(t).t

m=1
Define the following matrices:

inpaas,car (t)cfoar(t)ed
inpoor,cex(t)efeen(t)el + inprovrk (t)cfrrx (tely
inpro uro(t)cfumo (t)eg + inpresNeL(t)cfner (t)eg

BA(t) = inpnes anG (t)efuna (t)e '
inprpc uLp (t)cfue (t)ed
~inper A (t)cfam(t)eg
i inpnuc,nuL(t)efwun ( )611 ]
[ —045 0 0 0 0 O]
0 -1 00 0 O
—-025 0 00 O O
BB(t):=|-010 0 00 0 0],
-010 0 00 O O
-0.10 0 00 0 O
| 0 0 00 —10]|

BC(t) =7 [ 14><4 I4><4 I4><4 I4><4 ] , BD(t) = -1 [I4><4]
BE(t) :=

inperc.eL(t)cfeni(t) frecwp  inpeLcELp(t)cfeLp(t) freLc,wp

: : (4x10

inperc.eLi(t)cfeLi(t) frevcsy  npeLeELp (t)efeLn(t) freLc,sn

[ (e +e)" ]

BF(t) := nemyp [ 012 I**],  BH(t):= - 4 ,

4Due to an error of the author’s, 7(t) and s(¢) were miscalculated in the production
of the SMPS files. The actual values used in the SMPS files were r(1) = s(1) = 1.0,
r(2) = 1.914, and s(2) = 4.525.
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}
BM = ("W_D) “ BN := [co2g1s - - - 02
= " = ELI*°*CO HYD]a

[ UCELQVVDe;-
UCELYSNET gwn/{gwp + qwn)
BK = - : bk = — gwn/(gwp + gwn)
. T ’ gsp/(gsp + gsn)
UHYDIWDC12 gsn/(gsp + gsn)
i UHYDQSNCIQ

BL(t) == [ i ] (1—-_{%> [~uceLPkcEL(t)er—

uneLPkNeL(t)es — unuLPhnun(t)err — vayppkuayp (t)em]T +
el ferc,wp(t) freLc,wn/awp | ;. T
c t ’ ’ M tle, +
foua(?) [ el ferc,so(t) frec,sp/gsp (inparcpu(t)er
inprrc,eLD (1) 6;) ,

and the random
BP(t):= [ 6(t) &(t) o(t) o(t) .

Then, finally, we can assign Ay, for t = 1,2, and 75 in blocks. Let

I BA(t) BB(t)
BE(t) | (BC(®) + BF(})) BD(®)
_112x12 112><12
At = BH y

BK 116><16
BL(t) BM

BN BP |
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and

B 07)(50 ,
04)(50

_Il2x 12 j

Ty 1= %50
016><50

02)(50

01x50

We define the random right hand side as

07
04
TesidELI (t)

T esidHYD (t)
—demandgc(t)
—demandggao(t)

—demandygs(t)
b; == | —demandgas(t)
—demandypg(t)
~demandygr(t)

If the user then appends slack variables in the blocks corresponding to BA(t),
BE(t), BH(t), BK(t), BL(t) and BN(t), we will have the problem in the
form of (1).

(6]




9 Network model for asset or liability man-
agement

Due to J. M. Mulvey and H. Viadimirou [15]

See also Mulvey and Ruszczynski [14].

(Two-stage, linear stochastic problem)
/assets.sto.small

/assets/assets.cor,/assets.tim,
/assets.sto.large

9.1 Description

The management of assets or liabilities can be looked at as a network prob-
lem, where the asset categories are represented by nodes, and transactions
are represented by arcs. The purchase or sale of an asset usually has fixed,
deterministic associated costs, while the return on an investment from one
stage to the next is usually unknown.

Let the set of nodes be A/, and let A be the set of arcs. There exists a set
of terminal arcs 7 C A, over which the objective value will be calculated.

Define the following notation:
A;=the subset of arcs associated with deterministic multipliers

and first stage decisions
A,=the subset of arcs associated with stochastic multipliers and
first stage decisions
As=the subset of arcs associated with second stage decisions
N;=the subset of nodes with deterministic balance equations
No=N\N;
D;F=the set of outgoing arcs at node n
D =the set of incoming arcs at node n
z,=flow along arc a € A; U A,
y.=flow along arc a € A3
r,=multiplier for arc a € A
ba=supply or demand at node n € N’
l,=lower bound for arc a € A
ug,=upper bound for arc a € A.

Then the problem statement follows simply from a material balance at

each node.
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9.2 Problem statement
Given {r, : a € A1}, {b, : n € M1} and {(lo, us) : a € A}, the problem is to

maximize Z Te2e + F Z razg, + Z Tala

aEANT {rabn} | e donT a€ANT
subject to Z 2, — Z TeZa = bn, n € N,
aeD} e€Dy

Z Zq — }: TaZq — Z raZq +

aeDFN(A1UA;) €D NA; a€D; NA2
E , Yo — E raya:bm TI:ENQ,
aeD}FNA;3 a€D;; NA3z

laSZaS'U:a, GEA1UA27
laSyaSUa, G,E.Ag.

9.3 Numerical examples

Mulvey and Vladimirou [15] did not provide data for the numerical examples
that they discuss [13], so we have created two examples, each with two stages.
There are five nodes in each stage: checking, savings, certificate of deposit
(CD), cash, and loans, with initial balances of 100, 200, 150, 80, and -80,
respectively.

Of course, the yields are specified as random. The smaller problem, using
stochastic file assets.sto.small, has 100 random realizations, while the
larger problem, using assets.sto.large, has 37,500 realizations.

9.4 Notational reconciliation

Suppose the cardinality of A; U A, is ny, and that of Az is n,. Enumerate
the arcs so that arcs 1 through n; are in A; U Ay. Reorder the nodes so
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that the first V; are in the set Ni, and the rest are in M. For the set
® € {A;, Ay, T, D}, D}, define the diagonal matrix Af € R**™ by

1 ifaed®
(Af)aa = .
0 otherwise.

Similarly, for the set ® € {As, T, D;, Dy}, define the diagonal matrix A €
an Xn2 by .

1 if (m + a) cd
0 otherwise.

(A(zp)aa = {

The notation of (1) requires determinism in all of the first stage coeffi-
cients. However, since the only stochastic first stage coefficients are the costs,
we can use the expected value. For arc a € A; U A, define

To = E [ra].

Note that for a € A;, this is simply r,. Additionally, define £; € R™ by

~ r, ifae .Al
(rl)a = .
r, ifac€ A,.

Similarly, let £2 € R™ be defined by
(f‘z)a = TI'(ny+a)> Ya > ('I’Ll + a) € As.

To fit the notation of (1), we make the following assignments:

[ 21 ] b
an le
S T _ (41
. — . T
I = : y Ti= : y €= 02Xt | bl = )
1
8711 lrnl u”l
8% —ll
2
L Sn1 n L lnl J
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+ .
(11Xn1A1D1 _ fTA?l )

ON1X2n1
A= pt o Dx
' AmA™M —FTA™)
Inlxnl Inlxnl Onlxm
_In1><n1 Onlxnl Inlxm
n b, +1)
Yn, b§N1+N2)
81 £ u’(nl-l-l)
— . . 2 . .
T2 -= : » C2 [ 02nex1 ] , bz =
3
37512 U(ny+n2)
81 "l(n1+1)
4
| Sny L _l(n1+n2) i
1xny DZLN1+1) aT D(_N1+1) Ay Az
(1M A o SEAY )AL+ AT?)
: 0N2><217,1
T2 a 1xn D?-N1+N2) aT D(_N +Ng) A Az
(IPxmA, —HA T )AL + AT?)
02n2 Xny 02112 X211
and
i 1xng A PG4 T AP 403 A As ]
(1 A, — 1A, )A;
0N2><2n2
A2 o— D+ D
: Ixn (Ny+Ng) T (N1+N3) A3
(12xm2A, — 1A, )A
In2><n2 Inzxnz Onzxnz
— [neXn2 011.2)(712 Jrexne
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10 Cargo network scheduling

Due to Mulvey and Ruszczyriski [14]
(Two-stage, mixed integer linear or nonlinear stochastic problem)

/4node_det.sto
/4node.sto.16
/4node.sto.32
/4node.sto.64

/cargo/4node. cor, /4node.tim,

10.1 Description

Mulvey and Ruszczynski [14] provide a two stage network problem for
scheduling cargo transportation. The flight schedule is completely deter-
mined in stage one, and the amounts of cargo to be shipped are uncertain.
The recourse actions are to determine which cargo to place on which flights.
Transshipment, getting cargo from node m to node n by more than one
flight on more than one route, is allowed. When a transshipment is made,
cargo must be unloaded at some intermediate node, so that it may be loaded
onto a different route going through the same node. Such nodes are called
transshipment nodes. Any undelivered cargo costs a penalty.

The notation is introduced in Table 17. A route m € P is a finite sequence
of nodes (ny,na,...,n) to be visited in the course of flying the route.

Table 17: Notation

N =the set of nodes
P=the set of routes
A=the set of aircraft types
b(m, n)=the amount of cargo to be shipped from node m to
node n
c(a)=the cost of an hour of flight time for aircraft type a
h(m, a)=flight hours required for aircraft type a to complete
route m
g=the unit cargo cost for loading and unloading an
aircraft
p=the unit penalty for undelivered cargo
(continued on the next page)
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Notation (continued)

v(m, j)=function which returns the jth node in route =
I(m)=function which returns the number of nodes in route
T
o(n)=the maximum number of landings allowed in node
n
d(a)=the maximum payload of an aircraft of type a
f(m,n)=the minimum number of flights from node m to
node n
h™#*(g)=the maximum flying hours for aircraft of type a
h™i*(g)=the minimum flying hours for aircraft of type a
z(m, a)=the number of aircraft of type a assigned to fly route
T
d(m, m,n)=the amount of cargo delivered directly from m to n
on route m
t(m, m, k,n)=the amount of cargo moving from m to n which is
moved to transshipment node k£ on route 7
s(m, k,n)=the amount of transshipment cargo which is moved
from transshipment node & to node n on route 7
y(m,n)=the amount of cargo moving from m to n which is
undelivered

z(m, j)=the unused capacity of leg j on route =
Ulm,n)={r € P:m=v(m j1),n=v(mj2), 1 < ja}
Viln)={mr € P:n=u(m1)}
Viln)y={m € P:n=v(m (7))}
W(n)={r € P :n=v(mj) for some j}

The first stage constraints include minimum flight requirements

Z Z z(m,a) > f(m,n), VYmne N,

a€A €U (m,n)

and maximum landings limits

Z Z <o(n), VnenN.

a€A reW(n)
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Assuming the operation is cyclic, we must end the round in the same state
as that in which we began the round. That is,

Z z(m,a) = Z z(m,a), Va€ A,neN.
ﬂeyl(n) 7I'EVI(”)
Flying hours are limited by
R™iR(g) < Zx(ﬂ,a)h(ﬁ,a) < h™*(a), Va € A
weP

For recourse constraints, a cargo material balance yields

Z (d(w, m,n) + Z t(m,m, k, n)) +y(m,n) > b(m,n), Vm,neN.

TEP keN

A balance of all transshipments which go through & and wind up at n gives
Z Z t(m,m, k,n) = Zs(ﬂ,k,n), Vk,n e N.
7E€P meN TEP

Finally, consider the loading and unloading which must occur throughout
the course of a single route. At the initial node, we have

Z(d(w,v(w,l),k)—}—s(?rvwl +Z t(m,v(m, 1) kn))

keN neN

= Zd(a)x(ﬁ, a) — z(m,1), VwreP.

a€A

For the remaining nodes in the route, a payload balance yields

E (d(w,v(w,j),k)+s(7r v(m,j), k) + Z m,v(m, j), k, n))

kEN neN

——Z( (7, kyv(m, 7)) + s(m, k,v(m, 7)) +Z (7, kyv(m, 7), ))

keN neN
=2(m,j—1) = 2(m,5), VreP,j=2,...((r)—-1).
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The objective is to minimize the costs and penalties. Mulvey and Ru-
szczynski [14] provide both a linear objective function

minimize Z; = Z Z z(m,a) +

wEP a€EA
E qzz 7rmn+s(7rmn+z Wmnk)}
B(m;n) w€P (m,n)€w keN
+p ) Zy(m,n)} ,
meN neN
and a nonlinear objective function
minimize Z, = Z Z z(m,a) +

TEP a€EA
| E qzz wmn—i—s(wmn—l—z wmnk)}
b(mn) TEP (m,n)em keN
\ % T atmn) .
| meN neN
! where

®(z) = aexp(fz). (40)

10.2 Problem statement

Given @ as either the identity function or as in (40), the problem is to

minimize Z = Z Z c(a)h(r,a)z(r,a) +

TEP acA
b(fn) {@ QZ Z [d(’fr, m,n) + s(m,m,n) + Z t(m, m,n, k)]
, TEP (m,n)en keN
Y zym,n))},
mEN neN
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subject to

Z Z z(m,a) > f(m,n), Vm,neN,

a€A reU(m,n)
Z Z z(r,a) < o(n), VneWN,
a€A TeW(n)
Z z(m,a) = Z z(m,a), Yae€ AneN,
reVi(n) m€Vi(n)

R™"(a) < Zz(vr,a)h(w, a) < h™(a), Va € A,

TEP

Z (d(ﬂ,m, n) + Z t(m, m, k,n)) +y(m,n) > b(m,n), Vm,neN,

wTEP keN

Z Z t(m,m,k,n) = Zs(ﬂ,k,n), Vk,néN,

TEP meN TEP

> (d(w,v(ﬂ', 1), k) + s(m,v(m, 1), k) + > _ t(m,v(r, 1), k n)>

keN neN
=) d(a)z z(m,1), Vr € P,
a€A

Z (d(w,v(w,j),k)+s(7r v(m, j), k) + Z m,v(m, 7), k, n))

keN neN

—Z(Wk?)ﬁj )) + s(m, k,v(m, 5)) +Z (7, k,v(m, j),n ))
keN neN
=z2(m,j— 1) —2(m,j), VreP,j=2,...({(x) = 1),

z(m, a), d(m, m,n), t(r,m, k,n), s(r, k,n),y(m,n), 2(7,j) > 0
z(m,a) € Z.
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10.3 Numerical examples

Mulvey and Ruszczyriski [14] did not provide data for the numerical examples
that they discuss [13]. Therefore, we have created some examples from a four
node network, with node airports A, B, C and E. All flights 7 € P have two
legs. That is, including the airport of origin, there are three airports in each
flight. No direct legs are allowed between A and E, but all other possibilities
are allowed. Flights are enumerated according to Table 18. The notation
“ABA” means that the flight begins at airport A, flies to airport B, and
returns to airport A.

Table 18: Possible flights # € P for the numerical example

ABA 6 BAB 13 ECE 19 CAC
ABE 7 BAC 14 ECB 20 CAB
ABC 8 BCA 15 ECA 21 CBC

ACA 9 BCB 16 EBE 22 CBA
ACE 10 BCE 17 EBC 23 CBE
ACB 11 BEB 18 EBA 24 CEC

12 BEC 25 CEB

Tk W N — O

Two types of airplane are considered. Type O plane has a maximum
payload of 8, maximum flight hours of 480, and costs 5 per flight hour. Type
1 plane has a maximum payload of 6, maximum flight hours of 240, but only
costs 4 per flight hour. Both types of airplanes may have flight hours as low
as 0. The unit cost, ¢, for loading and unloading is 1.0, and p, the penalty
for undelivered cargo is 1300. There are no minimum numbers of flights, and
the limit on landings is, for the base problem, 25 for each airport. Flight
times for the two plane types are listed in Table 19.
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‘Table 19: Flight times for numerical example

Airplane Type 0 Airplane Type 1
A|B|C|E A|B|C}|E
Al-15]7]- Al - 6 |84 -
B|5|-14]38 B| 6 | - |48]96
C|74]-15 C 84|48 - | 6
E|{-]18]5]- E| - 196 6 | -

10.4 Notational reconciliation

We reconcile the problem in the Numerical examples section to the form of
problem (1). Define

- z(0,0) T
z(1,0)
: h(0,7)
| z(25,0) | ML)
1 = x(o’ 1) 5 and h/z — E 3
z(1,1) h(25,1)
| z(25,1) |
fori = 0,1, and let h := [ Z(l) ] . We will make use of the incidence matrices

W,V; € R j=1,2,3, defined by

1 if node m is the ith node in route n
0 otherwise,

and

1 if node m is in route n
Wmn == {

0 otherwise.
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We are now ready to define the stage one problem parameters. Let

[ o) ]
W W] ;
(Vl _ Vs) 05><26 0(5)
hT 01)(26 10%x1
A 126 T > b : 0
0 T ?226 hma‘x(())
—h] O max
Ol><216 —hT h mirgl)
L 2 ~h™"(0)
I _hmin(l) ]

and

o [ ]

Stage two is a bit more involved. We order the stage two variables into
Zo as shown below. When trying to figure out the ordering rationale for the
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2(25,2) |

d,t and s variables, it will help to look at Table 18.

The y variables follow an ordering we call “ordering J,” the alphabetical
ordering on all combinations of two nodes. We will make use of the following
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incidence matrices, defined

U, € R¥?¥%8, (Uh)ij =

U, € R'¥3, (Uz)i =

Us € R™>*%, (Us)ij =

U4 I R12><26’ (U4)ij =

as

= o

_— O

- O

—_— O

Us € REX3 (Us)pj 1=

U6 € R26><16, (U6)7rj =

and

U; € R26X36, (U7)7Tj =

O = O

1

0

if the ith pair of J is served by the jth

element of x5,
otherwise,

if the ith pair of J is (m,n) in the jth
t(m,m, k,n),

otherwise,

if the ith pair in J is (k,n) in the jth
t(m,m, k,n),

otherwise,

if the ith pair in J is (k,n) in the jth
s(m, k,n),

otherwise,

if the jth ¢(p, m, k,n) has m = v(x, 1) and
p=m,

otherwise,

if the (52+ j)th element of z5 is d(m, m, n),
otherwise,

if the jth t(p,m, k,n) has k = v(w,2) and

p=m,
otherwise.

We are finished putting the problem into the form (1) if we let

U1 Uz 012x26 Il2><12 012><52
012><68 U3 ——U4 012><12 012><52
AZ = 126><26 026><26 UG U5 026x26 026><12 I26><26 026x26
__126><26 I26x26 026><26 —U7 I26x26 026><12 _I26><26 126x26
. b
012><1
Cp 1= [ q(11x68) | q(11x36) | q(11><26) |p(a1x12) |01x52 ] : b2 = 026)(1
O26><1
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and

012><52
012x52
_d(0)126x26 _d(1)126x26

026x52

75:
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11 Telecommunication network planning

Due to Sen, Doverspike and Cosares [16]
(Two stage, mixed integer linear stochastic problem)
/phone/phone. cor,/phone.tim,phone.sto

11.1 Description

The service of providing private lines to telecommunication customers is one
with which most people are not familiar. Such service is used by large cor-
porations between business locations for high speed, private data transmis-
sion. Private lines are generally used for a much longer duration than public
switched service, and they generally carry more capacity per connection.

A manager of such a network must be constantly looking to the future, de-
ciding where and how much to expand capacity. In this problem formulation,
the “how much” is decided beforehand, to some extent, by the imposition of
an overall budget. Within the constraints of the budget, expansion is not pe-
nalized. The goal is to minimize the unserved requests, while staying within
budget. :

Such networks are usually very interconnected, so that for any point-to-
point demand pair, there is usually more than one route which may service
the demand. Each route is made of one or more direct links.

Let n be the number of direct links in the network which might be ex-
panded, and let z € Z" be the vector of expanded capacities in the links,
where Z is the set of integers. Let m be the number of point-to-point pairs
to be served by the network, and d € Z™ be the random variable of demands
for service between the pairs.

The total budget constraint will be denoted by b. Then, the problem is
to

minimize F [Q(z,d)]
d

subject to ij <b,
j=1

z >0,

where Q(z, d) represents the number of unserved requests, subject to network
balance constraints.
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For point-to-point pair i = 1,...,m, let R(¢) be the set of routes which
may be used to satisfy a request for service between the two locations. Ad-
_ditionally, for route r € R(i), let a; € Z" be the incidence vector defined

by

1 iflink j €r,
(air)j = .
0 otherwise.

Let e € Z™ be the existing capacity in the network.
The recourse variables are s;, the number of unserved requests, and f;,

the number of connections serving point-to-point pair i over route r. Then,
the recourse problem is

m
Q(z, d) :=minimize Zsi
i=1

m
subject to Z Z airfir <x+e,
)

i=1 reR(i
S fetsi=(d); Vi=1,...,m
reR(i)
fir,8i >0, Vi,r € R(3)
fir €Z, Vi,r € R(1).
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11.2 Problem statement

Given the budget constraint b, and the current condition of the network
{air, €}, the problem is to

minimize E
d

subject to Z(az)] <b,

=1
m

Z Z air fir < T+ e,

i=1 reR(3)

Z fortsi=(d), Vi=1l,...,m
r€R(1)

z, fir, 8 >0, Vi,r € R(3)
z, fir €Z, Vi, T € R(3).

11.3 Numerical example

We have created an example with 2% = 32, 768 random realizations and six
nodes. The possible routing is illustrated in Figure 7, and the possible routes
connecting each two-node combination are enumerated in Table 20.

The initial capacity of the network, e, is as follows:

route |1[2|3[4]|5|6|7|8
capacity (224412431

11.4 Notational reconciliation

To put the problem into the notation of (1), let z; € R and 2z, € R™ be slack
variables. Then set

21

Ay =100 = b eR,

T
Ty = [ ] € R, ¢ := O™+
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Table 20: Enumeration of all possible routes for telephone network example

94

node 1 — 2 nodel 43 nodel—+4 nodel—5 nodel1 — 6
0 12 0 13 0 14 0 125 0 136
1 142 1 143 1 124 1 1245 1 1436
2 1452 2 1243 2 1254 2 145 2 12436
3 1342 3 12543 3 134 3 1425 3 125436
4 13452 4 1345
5 13425
node 2 — 3 node 2 — 4 node 2 — 5 node 2 —» 6 node 3 — 4
0 213 0 24 0 25 0 2136 0 34
1 2143 1 214 1 245 1 21436 1 314
2 243 2 2134 2 2145 2 2436 2 3124
3 2543 3 254 3 21345 3 24136 3 31254
4 25413 4 25436
5 2413 5 254136
"node3—5 node3—>6 noded—5 node4—+6 nodeb—6
0 345 0 36 0 45 0 436 0 5436
1 3425 1 425 1 4136 1 54136
2 3145 2 4125 2 42136 2 52436
3 31425 3 43125 3 452136 3 524136
4 34125 4 52136
5 31245 5 542136
6 3125 6 521436



Figure 7: Illustration of routing for telephone network example

To 1=

and

fi
fi2
fir@)
: O(mR(m))xl
' — 1 e
o T I Dl v
S1 0
S2
Sm
29 ]
a4 Q1R1) *** GmRm) | O™ < ]
11><R(1) leR(Z) OIXR(m)
OLXR() 11xR(2)
I'me Omxn
le.R(l) 01><R(2) 11><R(m)

__'ITLX'IZ O
Ty = | g
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12 Bond investment planning

Due to K. Frauendorfer, C. Marohn, M. Schiirle [6]
(Multistage, linear stochastic problem)

12.1 Description

Frauendorfer, Marohn, and Schiirle [6] describe a suite of test problems for
multistage stochastic programming, based on bond investments. The test
problems are denoted SGPFmYn, where m € {3,5}, and n € {3,4,5,6,7}.

Many business ventures are financed by lending bonds, and many of these
ventures also purchase bonds. There is risk in such dealings, as returns on
bonds fluctuate, and earnings from the business ventures are uncertain. This
risk cannot be modeled by assuming a mean rate of return. Therefore, the
scenario is a good one for the application of stochastic programming.

Bonds mature in certain, standard time periods. Suppose we will consider
transactions in bonds with standard maturities in the set D°. Suppose that
the longest maturity in D5 is D months. Then, since the time frame is rolling
in such problems, we must include in the model bonds which mature in d
months, where d € D = {1,2,...,D}.

Let vf "+ be the amount of new borrowing done at time ¢ with maturity
d € D%, and let vf’— be the amount of new lending done in the same cir-
cumstances. Then, if v is the balance of bond transactions at time ¢ with

maturity d, we have

d_
Uy =

vl ot — T ifd € DY,
vit] if d € D\D%.

The total balance of bond transactions at time ¢ is
Ty = Z ’Uzi.

If this quantity is positive, the balance will be used to fund the business
venture during the time period ¢. Rather than writing z; as a function of
historical balances and rates of return, Frauendorfer, Marohn, and Schiirle
[6] simply express it as the stochastic quantity

Ty = Te1 + &,
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where & is a random variable.
To limit the sale of bonds, the authors [6] include the constraint

M
d,+ d
Z Vo E :vt—l < &
=1

deDS d

: d- _d :
Given random rates of return 5>~, n5°", and n¥, corresponding to the
quantities vf ", vf"", and z;, respectively, the objective is to maximize the

expected return:

T
£ {5 (St —itatri o) |
n,

t=0 \deDS

The returns at time ¢ = 0 are actually deterministic. So the decision variables
for time ¢ = 0 are the so-called first stage decision variables in the stochastic
problem.

12.2 Problem statement

We change the problem to a minimization, and separate the first stage vari-
ables and constraints from the recourse variables and constraints. We are
given all values for the time ¢ = —1 decision variables, and the time ¢ = 0
values of all n and £&. The program then is to

minimize Z [—ny v~ +ng gt = nfae +
deDS
y dr_ ) )
£ {3 (St ottt o) |
¢ Li=1 \¢eps
subject to
o~ ot — ol ol =0, Vde DS, (a1
vl —v¥l =0, VdeD\D5, (42)
zo - v =0,
deD




M

Z gt - Zvii.l < &o, (43)

deDS d=1
d -
vt v >0, VdeD,

vf—vffll—vf’“L—va’—:O, Vvde DS t=1,...,T,
vl —ol =0, VdeD\D%t=1,...,T,
xt—va-—-O, Vi=1,...,T,

deD
.’L't—ilft,lzé-t, Vt—_—l,...,T,
M
Yot =3 vh <& VE=1,...,T, (44)
deDs d=1

vt b >0, YdeD,t=1,...,T.

12.3 Numerical examples

A total of ten numerical examples in SMPS format [1] are available from
Birge’s POSTS web site [9]. Since the only coefficients to be specified in
this model are stochastic, specifying any one problem here would require
duplicating the stochastic file from the set of SMPS files. Therefore, we refer
the reader to the publicly available SMPS files [9].

12.4 Notational reconciliation

We may rearrange the equations represented by (41) and (42) so that they
are in ascending order, by d. Then we have D constraints, each with right-
hand sides v*1*, and left hand sides depending on whether d € DS or not.
We replace all v¢ with the term (vpf —vmy), with the added constraints that
vpd, vmd > 0.

Let {d1,d2,... ,dN} = {d € DS}. We define the matrix A5 € R”*¥ by

AS = [ el e ... e 1,
where e' € R? is the ith unit vector.
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Let s; be the slack variable associated with constraint (43) or (44). Assign
the new notation

C T
(vp?; —vm?2,) ] 0
(vp?, — vm?,) it
bl = (,Upl_jl - vml—)l) 3 €= T](‘)iN’+ )
0 dl,—
0 —To
M&’ + o -
d d —nith
| & + Zd=1(")p—1 —vm,) ] OQODXO
I _
and
zy = [ ZTo So vgl’+ vgN’+ v(‘)ﬂ’— vgN’_
vpy - vpg wvmg e umg ]
Also, let
ODxl ODxl —AS AS IDXD _IDXD
1 0 leN leN _11><D 11><D
Al = 1 0 leN leN OlXD 01><D
0 1 11><N leN 01><D leD
Analogous assignments are made for ¢t = 2,3,...,T, except that c; is

made stochastic for these times, because 7 is stochastic. Also,

ODxl
0
bt = 0 s
£t——1
-1
and
0Dx1 ODXI ODxN ODXN __ID><D IDxD
0 0 leN leN leD leD
T = -1 0 OIXN  IxN  glxD  lxD |

0 0 01><N leN —W1 W1
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where

Wl — [ 11xM le(D——M) ] .

100 ' d
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